cydxg's picture
Upload extra needed files
a2fedce verified
from pathlib import Path
import types
from typing import Optional, Tuple, Union, List, Dict, Any
import gc
import openvino as ov
from openvino.runtime import opset13
import nncf
import numpy as np
import torch
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, AutoConfig
from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLCausalLMOutputWithPast, VisionRotaryEmbedding
from transformers.cache_utils import DynamicCache
from transformers.modeling_outputs import ModelOutput
from transformers.generation import GenerationConfig, GenerationMixin
from transformers.modeling_outputs import CausalLMOutputWithPast
model_ids = ["Qwen/Qwen2-VL-2B-Instruct", "Qwen/Qwen2-VL-7B-Instruct"]
def model_selector(default=model_ids[0]):
import ipywidgets as widgets
model_checkpoint = widgets.Dropdown(
options=model_ids,
default=default,
description="Model:",
)
return model_checkpoint
def model_has_state(ov_model: ov.Model):
return len(ov_model.get_sinks()) > 0
def model_has_input_output_name(ov_model: ov.Model, name: str):
"""
Helper function for checking that model has specified input or output name
Parameters:
ov_model (ov.Model):
name (str):
name of input or output
Returns:
True if input or output with requested name exists else False
"""
return name in sum([list(t.get_names()) for t in ov_model.inputs + ov_model.outputs], [])
def fuse_cache_reorder(
ov_model: ov.Model,
not_kv_inputs: List[str],
key_value_input_names: List[str],
gather_dim: int,
):
"""
Fuses reored_cache during generate cycle into ov.Model. Used with stateful models, because we can not modify model state directly.
Adds a new beam_idx parameter and Gather op per each kv-cache input in a given model.
Should be run before make_stateful. Implements optimumum's _reorder_cache
inside the model in the beginning of each iteration.
Gather works along given gather_dim dimension that may vary from model to model.
KV-cache inputs are identified based on names in key_value_input_names.
Append the new beam_idx parameter to not_kv_inputs.
Parameters:
ov_model (`ov.Model`):
openvino model for processing
not_kv_inputs (`List[str]`):
list of input nodes in model that not related to past key values
key_value_input_names (`List[str]`):
list of names for key value input layers
gather_dim (int):
dimension for gathering cache during reorder pass
"""
if model_has_input_output_name(ov_model, "beam_idx"):
raise ValueError("Model already has fused cache")
input_batch = ov_model.input("inputs_embeds").get_partial_shape()[0]
beam_idx = opset13.parameter(name="beam_idx", dtype=ov.Type.i32, shape=ov.PartialShape([input_batch]))
beam_idx.output(0).get_tensor().add_names({"beam_idx"}) # why list is not accepted?
ov_model.add_parameters([beam_idx])
not_kv_inputs.append(ov_model.inputs[-1])
# Go over all cache parameters and fuse _reorder_cache with indices provided by the new parameter beam_idx
for input_name in key_value_input_names:
parameter_output_port = ov_model.input(input_name)
consumers = parameter_output_port.get_target_inputs()
gather = opset13.gather(parameter_output_port, beam_idx, opset13.constant(gather_dim))
for consumer in consumers:
consumer.replace_source_output(gather.output(0))
ov_model.validate_nodes_and_infer_types()
def build_state_initializer(ov_model: ov.Model, batch_dim: int):
"""
Build initialization ShapeOf Expression for all ReadValue ops
Parameters:
ov_model (ov.Model):
openvino model
batch_dim (int):
index of dimension corresponding to batch size
"""
input_ids = ov_model.input("inputs_embeds")
batch = opset13.gather(
opset13.shape_of(input_ids, output_type="i64"),
opset13.constant([0]),
opset13.constant(0),
)
for op in ov_model.get_ops():
if op.get_type_name() == "ReadValue":
dims = [dim.min_length for dim in list(op.get_output_partial_shape(0))]
dims[batch_dim] = batch
dims = [(opset13.constant(np.array([dim], dtype=np.int64)) if isinstance(dim, int) else dim) for dim in dims]
shape = opset13.concat(dims, axis=0)
broadcast = opset13.broadcast(opset13.constant(0.0, dtype=op.get_output_element_type(0)), shape)
op.set_arguments([broadcast])
ov_model.validate_nodes_and_infer_types()
def make_stateful(
ov_model: ov.Model,
not_kv_inputs: List[str],
key_value_input_names: List[str],
key_value_output_names: List[str],
batch_dim: int,
num_attention_heads: int,
num_beams_and_batch: int = None,
):
"""
Hides kv-cache inputs and outputs inside the model as variables.
Parameters:
ov_model (ov.Model):
openvino model
not_kv_inputs (`List[str]`):
list of input nodes in model that not related to past key values
key_value_input_names (`List[str]`):
list of names for key value input layers
key_value_output_names (`List[str]`):
list of names for key value input layers
batch_dim (int):
index of batch dimension in key value layers
num_attention_heads (int):
number of attention heads for batch dimension initialization
num_beams_an_batch (int):
precalculated number of beams and batch for shapes initialization
"""
from openvino._offline_transformations import apply_make_stateful_transformation
input_output_map = {}
if num_beams_and_batch is not None:
# Set batch size for input_ids and attention mask to avoid dynamic dimension got propagated from the end of the model back to ReadValue
for input in not_kv_inputs:
shape = input.get_partial_shape()
if shape.rank.get_length() <= 2: # == 1 for beam_index
shape[0] = num_beams_and_batch
input.get_node().set_partial_shape(shape)
for kv_name_pair in zip(key_value_input_names, key_value_output_names):
input_output_map[kv_name_pair[0]] = kv_name_pair[1]
if num_beams_and_batch is not None:
input = ov_model.input(kv_name_pair[0])
shape = input.get_partial_shape()
shape[batch_dim] = num_beams_and_batch * num_attention_heads
input.get_node().set_partial_shape(shape)
if num_beams_and_batch is not None:
# Re-validation model if shapes are altered above
ov_model.validate_nodes_and_infer_types()
apply_make_stateful_transformation(ov_model, input_output_map)
if num_beams_and_batch is None:
build_state_initializer(ov_model, batch_dim)
def patch_stateful(ov_model):
key_value_input_names = [key.get_any_name() for key in ov_model.inputs[2:-1]]
key_value_output_names = [key.get_any_name() for key in ov_model.outputs[1:]]
not_kv_inputs = [input for input in ov_model.inputs if not any(name in key_value_input_names for name in input.get_names())]
if not key_value_input_names or not key_value_output_names:
return
batch_dim = 0
num_attention_heads = 1
fuse_cache_reorder(ov_model, not_kv_inputs, key_value_input_names, batch_dim)
make_stateful(
ov_model,
not_kv_inputs,
key_value_input_names,
key_value_output_names,
batch_dim,
num_attention_heads,
None,
)
core = ov.Core()
def cleanup_torchscript_cache():
"""
Helper for removing cached model representation
"""
torch._C._jit_clear_class_registry()
torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
torch.jit._state._clear_class_state()
LANGUAGE_MODEL_NAME = "openvino_language_model.xml"
IMAGE_EMBEDDING_NAME = "openvino_vision_embeddings_model.xml"
IMAGE_EMBEDDING_MERGER_NAME = "openvino_vision_embeddings_merger_model.xml"
TEXT_EMBEDDING_NAME = "openvino_text_embeddings_model.xml"
def convert_qwen2vl_model(model_id, output_dir, quantization_config):
output_dir = Path(output_dir)
lang_model_path = output_dir / LANGUAGE_MODEL_NAME
image_embed_path = output_dir / IMAGE_EMBEDDING_NAME
embed_token_path = output_dir / TEXT_EMBEDDING_NAME
image_embed_merger_path = output_dir / IMAGE_EMBEDDING_MERGER_NAME
if all(
[
lang_model_path.exists(),
image_embed_path.exists(),
image_embed_merger_path.exists(),
embed_token_path.exists(),
]
):
print(f"✅ {model_id} model already converted. You can find results in {output_dir}")
return
print(f"⌛ {model_id} conversion started. Be patient, it may takes some time.")
print("⌛ Load Original model")
model = Qwen2VLForConditionalGeneration.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
model.config.save_pretrained(output_dir)
processor.save_pretrained(output_dir)
print("✅ Original model successfully loaded")
if not embed_token_path.exists():
print("⌛ Convert Input embedding model")
ov_model = ov.convert_model(
model.model.embed_tokens,
example_input=torch.ones([2, 2], dtype=torch.int64),
)
ov.save_model(ov_model, embed_token_path)
del ov_model
cleanup_torchscript_cache()
gc.collect()
print("✅ Input embedding model successfully converted")
if not image_embed_path.exists() or not image_embed_merger_path.exists():
print("⌛ Convert Image embedding model")
vision_embed_tokens = model.visual
if not image_embed_path.exists():
ov_model = ov.convert_model(vision_embed_tokens.patch_embed, example_input={"hidden_states": torch.randn([4988, 1176])})
ov.save_model(ov_model, image_embed_path)
del ov_model
cleanup_torchscript_cache()
def image_embed_forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, rotary_pos_emb: torch.Tensor) -> torch.Tensor:
for blk in self.blocks:
hidden_states = blk(hidden_states, attention_mask=attention_mask, rotary_pos_emb=rotary_pos_emb)
return self.merger(hidden_states)
def sdpa_attn_forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, rotary_pos_emb: torch.Tensor = None) -> torch.Tensor:
from transformers.models.qwen2_vl.modeling_qwen2_vl import apply_rotary_pos_emb_vision
seq_length = hidden_states.shape[0]
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
q = q.transpose(0, 1)
k = k.transpose(0, 1)
v = v.transpose(0, 1)
attn_output = torch.nn.functional.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0)
attn_output = attn_output.transpose(0, 1)
attn_output = attn_output.reshape(seq_length, -1)
attn_output = self.proj(attn_output)
return attn_output
def block_forward(self, hidden_states, attention_mask, rotary_pos_emb) -> torch.Tensor:
hidden_states = hidden_states + self.attn(self.norm1(hidden_states), attention_mask=attention_mask, rotary_pos_emb=rotary_pos_emb)
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
return hidden_states
if not image_embed_merger_path.exists():
vision_embed_tokens.forward = types.MethodType(image_embed_forward, vision_embed_tokens)
for block in vision_embed_tokens.blocks:
block.forward = types.MethodType(block_forward, block)
block.attn.forward = types.MethodType(sdpa_attn_forward, block.attn)
ov_model = ov.convert_model(
vision_embed_tokens,
example_input={
"hidden_states": torch.randn([4988, 1280]),
"attention_mask": torch.ones([1, 4988, 4988]),
"rotary_pos_emb": torch.randn([4988, 40]),
},
)
if quantization_config is not None:
print(f"⌛ Weights compression with {quantization_config['mode']} mode started")
ov_model = nncf.compress_weights(ov_model, **quantization_config)
print("✅ Weights compression finished")
ov.save_model(ov_model, image_embed_merger_path)
del ov_model
cleanup_torchscript_cache()
del vision_embed_tokens
gc.collect()
print("✅ Image embedding model successfully converted")
if not lang_model_path.exists():
print("⌛ Convert Language model")
def forward_wrap(
self,
attention_mask,
position_ids=None,
past_key_values=None,
inputs_embeds=None,
):
new_past_key_values = DynamicCache.from_legacy_cache(past_key_values)
result = self._orig_forward(
input_ids=None,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=new_past_key_values,
inputs_embeds=inputs_embeds,
)
if past_key_values is not None:
result["past_key_values"] = result["past_key_values"].to_legacy_cache()
return tuple(result.values())
model._orig_forward = model.forward
model.forward = types.MethodType(forward_wrap, model)
hidden_size = model.config.hidden_size
num_pkv = model.config.num_hidden_layers
pkv_shape = (2, model.config.num_key_value_heads, 2, hidden_size // model.config.num_attention_heads)
cache_position = torch.arange(2, 4)
position_ids = cache_position.view(1, 1, -1).expand(3, 2, -1)
input_embeds = torch.randn((2, 2, hidden_size))
attention_mask = torch.ones([2, 4], dtype=torch.long)
input_names = ["attention_mask", "position_ids"]
output_names = ["logits"]
past_key_values = []
for i in range(num_pkv):
kv = [torch.randn(pkv_shape) for _ in range(2)]
past_key_values.append(kv)
input_names.extend([f"past_key_values.{i}.key", f"past_key_values.{i}.value"])
output_names.extend([f"present.{i}.key", f"present.{i}.value"])
input_names.append("inputs_embeds")
example_input = {"inputs_embeds": input_embeds, "attention_mask": attention_mask, "position_ids": position_ids, "past_key_values": past_key_values}
ov_model = ov.convert_model(
model,
example_input=example_input,
)
for input, input_name in zip(ov_model.inputs, input_names):
input.get_tensor().set_names({input_name})
for output, output_name in zip(ov_model.outputs, output_names):
output.get_tensor().set_names({output_name})
patch_stateful(ov_model)
print("✅ Language model successfully converted")
if quantization_config is not None:
print(f"⌛ Weights compression with {quantization_config['mode']} mode started")
ov_model = nncf.compress_weights(ov_model, **quantization_config)
print("✅ Weights compression finished")
ov.save_model(ov_model, lang_model_path, False)
del ov_model
cleanup_torchscript_cache()
del model
gc.collect()
print(f"✅ {model_id} model conversion finished. You can find results in {output_dir}")
class OVQwen2VLModel(GenerationMixin):
def __init__(self, model_dir, device, ov_config=None):
model_dir = Path(model_dir)
self.model = core.read_model(model_dir / LANGUAGE_MODEL_NAME)
self.image_embed = core.compile_model(model_dir / IMAGE_EMBEDDING_NAME, device, ov_config)
self.image_embed_merger = core.compile_model(model_dir / IMAGE_EMBEDDING_MERGER_NAME, device, ov_config)
self.embed_tokens = core.compile_model(model_dir / TEXT_EMBEDDING_NAME, device)
self.input_names = {key.get_any_name(): idx for idx, key in enumerate(self.model.inputs)}
self.output_names = {key.get_any_name(): idx for idx, key in enumerate(self.model.outputs)}
compiled_model = core.compile_model(self.model, device, ov_config)
self.request = compiled_model.create_infer_request()
self.config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True)
self.generation_config = GenerationConfig.from_model_config(self.config)
self.main_input_name = "input_ids"
self.device = torch.device("cpu")
self.num_pkv = 2
self._supports_cache_class = False
self.next_beam_idx = None
self._past_length = None
self._rotary_pos_emb = VisionRotaryEmbedding(self.config.vision_config.embed_dim // self.config.vision_config.num_heads // 2)
def can_generate(self):
"""Returns True to validate the check that the model using `GenerationMixin.generate()` can indeed generate."""
return True
def __call__(self, *args, **kwargs) -> CausalLMOutputWithPast:
return self.forward(
*args,
**kwargs,
)
def _reorder_cache(self, past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
"""
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called.
This is required to match `past_key_values` with the correct beam_idx at every generation step.
"""
self.next_beam_idx = np.array(beam_idx) # save beam_idx to be used as an input in the next iteration
return past_key_values
def _get_past_length(self, past_key_values=None):
if past_key_values is None:
return 0
return self._past_length
def get_rope_index(
self,
input_ids: torch.LongTensor,
image_grid_thw: Optional[torch.LongTensor] = None,
video_grid_thw: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Calculate the 3D rope index based on image and video's temporal, height and width in LLM.
Explanation:
Each embedding sequence contains vision embedding and text embedding or just contains text embedding.
For pure text embedding sequence, the rotary position embedding has no difference with mordern LLMs.
Examples:
input_ids: [T T T T T], here T is for text.
temporal position_ids: [0, 1, 2, 3, 4]
height position_ids: [0, 1, 2, 3, 4]
width position_ids: [0, 1, 2, 3, 4]
For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part
and 1D rotary position embeddin for text part.
Examples:
Assume we have a video input with 3 temporal patches, 2 height patches and 2 width patches.
input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision.
vision temporal position_ids: [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2]
vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]
vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
text temporal position_ids: [3, 4, 5, 6, 7]
text height position_ids: [3, 4, 5, 6, 7]
text width position_ids: [3, 4, 5, 6, 7]
Here we calculate the text start position_ids as the max vision position_ids plus 1.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
The temporal, height and width of feature shape of each image in LLM.
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
The temporal, height and width of feature shape of each video in LLM.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
Returns:
position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`)
mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`)
"""
spatial_merge_size = self.config.vision_config.spatial_merge_size
image_token_id = self.config.image_token_id
video_token_id = self.config.video_token_id
vision_start_token_id = self.config.vision_start_token_id
mrope_position_deltas = []
if image_grid_thw is not None or video_grid_thw is not None:
total_input_ids = input_ids
position_ids = torch.ones(3, input_ids.shape[0], input_ids.shape[1], dtype=input_ids.dtype, device=input_ids.device)
image_index, video_index = 0, 0
for i, input_ids in enumerate(total_input_ids):
if attention_mask is not None:
input_ids = input_ids[attention_mask[i] == 1]
image_nums, video_nums = 0, 0
vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1)
vision_tokens = input_ids[vision_start_indices + 1]
image_nums = (vision_tokens == image_token_id).sum()
video_nums = (vision_tokens == video_token_id).sum()
input_tokens = input_ids.tolist()
llm_pos_ids_list: list = []
st = 0
remain_images, remain_videos = image_nums, video_nums
for _ in range(image_nums + video_nums):
if image_token_id in input_tokens and remain_images > 0:
ed_image = input_tokens.index(image_token_id, st)
else:
ed_image = len(input_tokens) + 1
if video_token_id in input_tokens and remain_videos > 0:
ed_video = input_tokens.index(video_token_id, st)
else:
ed_video = len(input_tokens) + 1
if ed_image < ed_video:
t, h, w = (
image_grid_thw[image_index][0],
image_grid_thw[image_index][1],
image_grid_thw[image_index][2],
)
image_index += 1
remain_images -= 1
ed = ed_image
else:
t, h, w = (
video_grid_thw[video_index][0],
video_grid_thw[video_index][1],
video_grid_thw[video_index][2],
)
video_index += 1
remain_videos -= 1
ed = ed_video
llm_grid_t, llm_grid_h, llm_grid_w = (
t.item(),
h.item() // spatial_merge_size,
w.item() // spatial_merge_size,
)
text_len = ed - st
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
t_index = torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten()
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten()
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten()
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
if st < len(input_tokens):
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
text_len = len(input_tokens) - st
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device)
mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i]))
mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1)
return position_ids, mrope_position_deltas
else:
if attention_mask is not None:
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(input_ids.device)
max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0]
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
else:
position_ids = torch.arange(input_ids.shape[1], device=input_ids.device).view(1, 1, -1).expand(3, input_ids.shape[0], -1)
mrope_position_deltas = torch.zeros(
[input_ids.shape[0], 1],
device=input_ids.device,
dtype=input_ids.dtype,
)
return position_ids, mrope_position_deltas
def _update_model_kwargs_for_generation(
self,
outputs: ModelOutput,
model_kwargs: Dict[str, Any],
is_encoder_decoder: bool = False,
num_new_tokens: int = 1,
) -> Dict[str, Any]:
model_kwargs = super()._update_model_kwargs_for_generation(
outputs=outputs,
model_kwargs=model_kwargs,
is_encoder_decoder=is_encoder_decoder,
num_new_tokens=num_new_tokens,
)
if getattr(outputs, "rope_deltas", None) is not None:
model_kwargs["rope_deltas"] = outputs.rope_deltas
return model_kwargs
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
pixel_values=None,
pixel_values_videos=None,
image_grid_thw=None,
video_grid_thw=None,
**kwargs,
):
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
if past_key_values is not None:
if inputs_embeds is not None: # Exception 1
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
rope_deltas = kwargs.get("rope_deltas", None)
if attention_mask is not None and position_ids is None:
if cache_position is None or (cache_position is not None and cache_position[0] == 0):
position_ids, rope_deltas = self.get_rope_index(input_ids, image_grid_thw, video_grid_thw, attention_mask)
else:
batch_size, seq_length = input_ids.shape
delta = cache_position[0] + rope_deltas if cache_position is not None and rope_deltas is not None else 0
position_ids = torch.arange(seq_length, device=input_ids.device)
position_ids = position_ids.view(1, -1).expand(batch_size, -1)
position_ids = position_ids.add(delta)
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
if cache_position[0] != 0:
pixel_values = None
pixel_values_videos = None
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and cache_position[0] == 0:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
"pixel_values_videos": pixel_values_videos,
"image_grid_thw": image_grid_thw,
"video_grid_thw": video_grid_thw,
"rope_deltas": rope_deltas,
}
)
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
pixel_values: Optional[torch.Tensor] = None,
pixel_values_videos: Optional[torch.FloatTensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
video_grid_thw: Optional[torch.LongTensor] = None,
rope_deltas: Optional[torch.LongTensor] = None,
) -> Union[Tuple, Qwen2VLCausalLMOutputWithPast]:
r"""
Args:.to(inputs_embeds.device)
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
>>> model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
>>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
>>> messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
>>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
```"""
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)[0]
if pixel_values is not None:
pixel_values = pixel_values
image_embeds = self.visual(pixel_values, image_grid_thw)
image_mask = input_ids == self.config.image_token_id
inputs_embeds[image_mask] = image_embeds
if pixel_values_videos is not None:
pixel_values_videos = pixel_values_videos
video_embeds = self.visual(pixel_values_videos, video_grid_thw)
video_mask = input_ids == self.config.video_token_id
inputs_embeds[video_mask] = video_embeds
if attention_mask is not None:
attention_mask = attention_mask
if past_key_values is None:
self.request.reset_state()
self.next_beam_idx = np.arange(inputs_embeds.shape[0], dtype=int)
self._past_length = 0
inputs = {}
inputs["inputs_embeds"] = inputs_embeds
inputs["attention_mask"] = attention_mask
inputs["position_ids"] = position_ids
if "beam_idx" in self.input_names:
inputs["beam_idx"] = self.next_beam_idx if self.next_beam_idx is not None else np.arange(inputs_embeds.shape[0], dtype=int)
self.request.start_async(inputs, share_inputs=True)
self.request.wait()
logits = self.request.get_tensor("logits").data
logits = torch.from_numpy(logits).to(self.device)
past_key_values = ((),)
self._past_length += inputs["inputs_embeds"].shape[1]
return Qwen2VLCausalLMOutputWithPast(
loss=None,
logits=logits,
past_key_values=past_key_values,
rope_deltas=rope_deltas,
)
def rot_pos_emb(self, grid_thw):
pos_ids = []
for t, h, w in grid_thw:
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
hpos_ids = hpos_ids.reshape(
h // self.config.vision_config.spatial_merge_size,
self.config.vision_config.spatial_merge_size,
w // self.config.vision_config.spatial_merge_size,
self.config.vision_config.spatial_merge_size,
)
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
hpos_ids = hpos_ids.flatten()
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
wpos_ids = wpos_ids.reshape(
h // self.config.vision_config.spatial_merge_size,
self.config.vision_config.spatial_merge_size,
w // self.config.vision_config.spatial_merge_size,
self.config.vision_config.spatial_merge_size,
)
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
wpos_ids = wpos_ids.flatten()
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
pos_ids = torch.cat(pos_ids, dim=0)
max_grid_size = grid_thw[:, 1:].max()
rotary_pos_emb_full = self._rotary_pos_emb(max_grid_size)
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
return rotary_pos_emb
def visual(self, hidden_states, grid_thw):
hidden_states = self.image_embed(hidden_states)[0]
rotary_pos_emb = self.rot_pos_emb(grid_thw)
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(dim=0, dtype=torch.int32)
cu_seqlens = torch.nn.functional.pad(cu_seqlens, (1, 0), value=0)
attention_mask = torch.zeros((1, hidden_states.shape[0], hidden_states.shape[0]), dtype=torch.bool)
causal_mask = torch.zeros_like(attention_mask, dtype=torch.float32)
for i in range(1, len(cu_seqlens)):
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True
causal_mask.masked_fill_(torch.logical_not(attention_mask), float("-inf"))
res = self.image_embed_merger([hidden_states, causal_mask, rotary_pos_emb])[0]
return res