|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import torch |
|
from hyperpyyaml import load_hyperpyyaml |
|
from modelscope import snapshot_download |
|
from cosyvoice.cli.frontend import CosyVoiceFrontEnd |
|
from cosyvoice.cli.model import CosyVoiceModel |
|
|
|
class CosyVoice: |
|
|
|
def __init__(self, model_dir): |
|
instruct = True if '-Instruct' in model_dir else False |
|
self.model_dir = model_dir |
|
if not os.path.exists(model_dir): |
|
model_dir = snapshot_download(model_dir) |
|
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f: |
|
configs = load_hyperpyyaml(f) |
|
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'], |
|
configs['feat_extractor'], |
|
'{}/campplus.onnx'.format(model_dir), |
|
'{}/speech_tokenizer_v1.onnx'.format(model_dir), |
|
'{}/spk2info.pt'.format(model_dir), |
|
instruct, |
|
configs['allowed_special']) |
|
self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift']) |
|
self.model.load('{}/llm.pt'.format(model_dir), |
|
'{}/flow.pt'.format(model_dir), |
|
'{}/hift.pt'.format(model_dir)) |
|
del configs |
|
|
|
def list_avaliable_spks(self): |
|
spks = list(self.frontend.spk2info.keys()) |
|
return spks |
|
|
|
def inference_sft(self, tts_text, spk_id): |
|
tts_speeches = [] |
|
for i in self.frontend.text_normalize(tts_text, split=True): |
|
model_input = self.frontend.frontend_sft(i, spk_id) |
|
model_output = self.model.inference(**model_input) |
|
tts_speeches.append(model_output['tts_speech']) |
|
return {'tts_speech': torch.concat(tts_speeches, dim=1)} |
|
|
|
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k): |
|
prompt_text = self.frontend.text_normalize(prompt_text, split=False) |
|
tts_speeches = [] |
|
for i in self.frontend.text_normalize(tts_text, split=True): |
|
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k) |
|
model_output = self.model.inference(**model_input) |
|
tts_speeches.append(model_output['tts_speech']) |
|
return {'tts_speech': torch.concat(tts_speeches, dim=1)} |
|
|
|
def inference_cross_lingual(self, tts_text, prompt_speech_16k): |
|
if self.frontend.instruct is True: |
|
raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir)) |
|
tts_speeches = [] |
|
for i in self.frontend.text_normalize(tts_text, split=True): |
|
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k) |
|
model_output = self.model.inference(**model_input) |
|
tts_speeches.append(model_output['tts_speech']) |
|
return {'tts_speech': torch.concat(tts_speeches, dim=1)} |
|
|
|
def inference_instruct(self, tts_text, spk_id, instruct_text): |
|
if self.frontend.instruct is False: |
|
raise ValueError('{} do not support instruct inference'.format(self.model_dir)) |
|
instruct_text = self.frontend.text_normalize(instruct_text, split=False) |
|
tts_speeches = [] |
|
for i in self.frontend.text_normalize(tts_text, split=True): |
|
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text) |
|
model_output = self.model.inference(**model_input) |
|
tts_speeches.append(model_output['tts_speech']) |
|
return {'tts_speech': torch.concat(tts_speeches, dim=1)} |
|
|