|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from functools import partial |
|
import onnxruntime |
|
import torch |
|
import numpy as np |
|
import whisper |
|
from typing import Callable |
|
import torchaudio.compliance.kaldi as kaldi |
|
import torchaudio |
|
import os |
|
import re |
|
import inflect |
|
try: |
|
import ttsfrd |
|
use_ttsfrd = True |
|
except ImportError: |
|
print("failed to import ttsfrd, use WeTextProcessing instead") |
|
from tn.chinese.normalizer import Normalizer as ZhNormalizer |
|
from tn.english.normalizer import Normalizer as EnNormalizer |
|
use_ttsfrd = False |
|
from cosyvoice.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph |
|
|
|
|
|
class CosyVoiceFrontEnd: |
|
|
|
def __init__(self, |
|
get_tokenizer: Callable, |
|
feat_extractor: Callable, |
|
campplus_model: str, |
|
speech_tokenizer_model: str, |
|
spk2info: str = '', |
|
instruct: bool = False, |
|
allowed_special: str = 'all'): |
|
self.tokenizer = get_tokenizer() |
|
self.feat_extractor = feat_extractor |
|
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
option = onnxruntime.SessionOptions() |
|
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL |
|
option.intra_op_num_threads = 1 |
|
self.campplus_session = onnxruntime.InferenceSession(campplus_model, sess_options=option, providers=["CPUExecutionProvider"]) |
|
self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option, providers=["CUDAExecutionProvider"if torch.cuda.is_available() else "CPUExecutionProvider"]) |
|
if os.path.exists(spk2info): |
|
self.spk2info = torch.load(spk2info, map_location=self.device) |
|
self.instruct = instruct |
|
self.allowed_special = allowed_special |
|
self.inflect_parser = inflect.engine() |
|
self.use_ttsfrd = use_ttsfrd |
|
if self.use_ttsfrd: |
|
self.frd = ttsfrd.TtsFrontendEngine() |
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) |
|
assert self.frd.initialize('{}/../../pretrained_models/CosyVoice-ttsfrd/resource'.format(ROOT_DIR)) is True, 'failed to initialize ttsfrd resource' |
|
self.frd.set_lang_type('pinyin') |
|
self.frd.enable_pinyin_mix(True) |
|
self.frd.set_breakmodel_index(1) |
|
else: |
|
self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False) |
|
self.en_tn_model = EnNormalizer() |
|
|
|
def _extract_text_token(self, text): |
|
text_token = self.tokenizer.encode(text, allowed_special=self.allowed_special) |
|
text_token = torch.tensor([text_token], dtype=torch.int32).to(self.device) |
|
text_token_len = torch.tensor([text_token.shape[1]], dtype=torch.int32).to(self.device) |
|
return text_token, text_token_len |
|
|
|
def _extract_speech_token(self, speech): |
|
feat = whisper.log_mel_spectrogram(speech, n_mels=128) |
|
speech_token = self.speech_tokenizer_session.run(None, {self.speech_tokenizer_session.get_inputs()[0].name: feat.detach().cpu().numpy(), |
|
self.speech_tokenizer_session.get_inputs()[1].name: np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist() |
|
speech_token = torch.tensor([speech_token], dtype=torch.int32).to(self.device) |
|
speech_token_len = torch.tensor([speech_token.shape[1]], dtype=torch.int32).to(self.device) |
|
return speech_token, speech_token_len |
|
|
|
def _extract_spk_embedding(self, speech): |
|
feat = kaldi.fbank(speech, |
|
num_mel_bins=80, |
|
dither=0, |
|
sample_frequency=16000) |
|
feat = feat - feat.mean(dim=0, keepdim=True) |
|
embedding = self.campplus_session.run(None, {self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist() |
|
embedding = torch.tensor([embedding]).to(self.device) |
|
return embedding |
|
|
|
def _extract_speech_feat(self, speech): |
|
speech_feat = self.feat_extractor(speech).squeeze(dim=0).transpose(0, 1).to(self.device) |
|
speech_feat = speech_feat.unsqueeze(dim=0) |
|
speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device) |
|
return speech_feat, speech_feat_len |
|
|
|
def text_normalize(self, text, split=True): |
|
text = text.strip() |
|
if contains_chinese(text): |
|
if self.use_ttsfrd: |
|
text = self.frd.get_frd_extra_info(text, 'input') |
|
else: |
|
text = self.zh_tn_model.normalize(text) |
|
text = text.replace("\n", "") |
|
text = replace_blank(text) |
|
text = replace_corner_mark(text) |
|
text = text.replace(".", "、") |
|
text = text.replace(" - ", ",") |
|
text = remove_bracket(text) |
|
text = re.sub(r'[,,]+$', '。', text) |
|
texts = [i for i in split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80, |
|
token_min_n=60, merge_len=20, |
|
comma_split=False)] |
|
else: |
|
if self.use_ttsfrd: |
|
text = self.frd.get_frd_extra_info(text, 'input') |
|
else: |
|
text = self.en_tn_model.normalize(text) |
|
text = spell_out_number(text, self.inflect_parser) |
|
texts = [i for i in split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80, |
|
token_min_n=60, merge_len=20, |
|
comma_split=False)] |
|
if split is False: |
|
return text |
|
return texts |
|
|
|
def frontend_sft(self, tts_text, spk_id): |
|
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text) |
|
embedding = self.spk2info[spk_id]['embedding'] |
|
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding} |
|
return model_input |
|
|
|
def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k): |
|
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text) |
|
prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text) |
|
prompt_speech_22050 = torchaudio.transforms.Resample(orig_freq=16000, new_freq=22050)(prompt_speech_16k) |
|
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_22050) |
|
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k) |
|
embedding = self._extract_spk_embedding(prompt_speech_16k) |
|
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, |
|
'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len, |
|
'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len, |
|
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len, |
|
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len, |
|
'llm_embedding': embedding, 'flow_embedding': embedding} |
|
return model_input |
|
|
|
def frontend_cross_lingual(self, tts_text, prompt_speech_16k): |
|
model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k) |
|
|
|
del model_input['prompt_text'] |
|
del model_input['prompt_text_len'] |
|
del model_input['llm_prompt_speech_token'] |
|
del model_input['llm_prompt_speech_token_len'] |
|
return model_input |
|
|
|
def frontend_instruct(self, tts_text, spk_id, instruct_text): |
|
model_input = self.frontend_sft(tts_text, spk_id) |
|
|
|
del model_input['llm_embedding'] |
|
instruct_text_token, instruct_text_token_len = self._extract_text_token(instruct_text + '<endofprompt>') |
|
model_input['prompt_text'] = instruct_text_token |
|
model_input['prompt_text_len'] = instruct_text_token_len |
|
return model_input |
|
|