cydxg commited on
Commit
6247296
1 Parent(s): d5f0568

Upload 10 files

Browse files
speech_tokenizer/__init__.py ADDED
File without changes
speech_tokenizer/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (139 Bytes). View file
 
speech_tokenizer/__pycache__/configuration_whisper.cpython-310.pyc ADDED
Binary file (1.24 kB). View file
 
speech_tokenizer/__pycache__/generation_whisper.cpython-310.pyc ADDED
Binary file (59.5 kB). View file
 
speech_tokenizer/__pycache__/modeling_whisper.cpython-310.pyc ADDED
Binary file (81.1 kB). View file
 
speech_tokenizer/__pycache__/utils.cpython-310.pyc ADDED
Binary file (2.96 kB). View file
 
speech_tokenizer/configuration_whisper.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import WhisperConfig
2
+
3
+
4
+ class WhisperVQConfig(WhisperConfig):
5
+ def __init__(self,
6
+ pooling_kernel_size=None,
7
+ pooling_type="max",
8
+ pooling_position=0,
9
+ quantize_vocab_size=None,
10
+ quantize_position=16,
11
+ quantize_commit_coefficient=0.25,
12
+ quantize_loss_scale=1.0,
13
+ quantize_ema_decay=None,
14
+ quantize_restart_interval=None,
15
+ quantize_encoder_only=False,
16
+ quantize_causal_encoder=False,
17
+ quantize_causal_block_size=None,
18
+ skip_language_detection=False,
19
+ encoder_causal_attention=False,
20
+ encoder_causal_convolution=False,
21
+ **kwargs):
22
+ self.pooling_kernel_size = pooling_kernel_size
23
+ self.pooling_type = pooling_type
24
+ self.pooling_position = pooling_position
25
+ self.quantize_vocab_size = quantize_vocab_size
26
+ self.quantize_position = quantize_position
27
+ self.quantize_commit_coefficient = quantize_commit_coefficient
28
+ self.quantize_loss_scale = quantize_loss_scale
29
+ self.quantize_ema_decay = quantize_ema_decay
30
+ self.quantize_restart_interval = quantize_restart_interval
31
+ self.quantize_encoder_only = quantize_encoder_only
32
+ self.quantize_causal_encoder = quantize_causal_encoder
33
+ self.quantize_causal_block_size = quantize_causal_block_size
34
+ self.skip_language_detection = skip_language_detection
35
+ self.encoder_causal_attention = encoder_causal_attention
36
+ self.encoder_causal_convolution = encoder_causal_convolution
37
+ super().__init__(**kwargs)
speech_tokenizer/generation_whisper.py ADDED
@@ -0,0 +1,1828 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ import copy
16
+ import math
17
+ import warnings
18
+ import zlib
19
+ from typing import Callable, Iterator, List, Optional, Tuple, Union
20
+
21
+ import numpy as np
22
+ import torch
23
+ import torch.nn.functional as F
24
+ from torch import nn
25
+
26
+ from transformers.cache_utils import EncoderDecoderCache
27
+
28
+ from transformers.generation.configuration_utils import GenerationConfig
29
+ from transformers.generation.logits_process import (
30
+ LogitsProcessorList,
31
+ SuppressTokensAtBeginLogitsProcessor,
32
+ SuppressTokensLogitsProcessor,
33
+ WhisperNoSpeechDetection,
34
+ WhisperTimeStampLogitsProcessor,
35
+ )
36
+ from transformers.generation.stopping_criteria import StoppingCriteriaList
37
+ from transformers.modeling_outputs import BaseModelOutput
38
+ from transformers.utils import logging
39
+ from transformers.models.whisper.tokenization_whisper import TASK_IDS, TO_LANGUAGE_CODE
40
+
41
+
42
+ logger = logging.get_logger(__name__)
43
+
44
+
45
+ def _median_filter(inputs: torch.Tensor, filter_width: int) -> torch.Tensor:
46
+ """
47
+ Applies a median filter of width `filter_width` along the last dimension of the input.
48
+
49
+ The `inputs` tensor is assumed to be 3- or 4-dimensional.
50
+ """
51
+ if filter_width <= 0 or filter_width % 2 != 1:
52
+ raise ValueError("`filter_width` should be an odd number")
53
+
54
+ pad_width = filter_width // 2
55
+ if inputs.shape[-1] <= pad_width:
56
+ return inputs
57
+
58
+ # Pad the left and right edges.
59
+ inputs = nn.functional.pad(inputs, (pad_width, pad_width, 0, 0), mode="reflect")
60
+
61
+ # sort() is faster than torch.median (https://github.com/pytorch/pytorch/issues/51450)
62
+ result = inputs.unfold(-1, filter_width, 1).sort()[0][..., pad_width]
63
+ return result
64
+
65
+
66
+ def _dynamic_time_warping(matrix: np.ndarray):
67
+ """
68
+ Measures similarity between two temporal sequences: the input audio and the output tokens. Used to generate
69
+ token-level timestamps.
70
+ """
71
+ output_length, input_length = matrix.shape
72
+ cost = np.ones((output_length + 1, input_length + 1), dtype=np.float32) * np.inf
73
+ trace = -np.ones((output_length + 1, input_length + 1), dtype=np.float32)
74
+
75
+ cost[0, 0] = 0
76
+ for j in range(1, input_length + 1):
77
+ for i in range(1, output_length + 1):
78
+ c0 = cost[i - 1, j - 1]
79
+ c1 = cost[i - 1, j]
80
+ c2 = cost[i, j - 1]
81
+
82
+ if c0 < c1 and c0 < c2:
83
+ c, t = c0, 0
84
+ elif c1 < c0 and c1 < c2:
85
+ c, t = c1, 1
86
+ else:
87
+ c, t = c2, 2
88
+
89
+ cost[i, j] = matrix[i - 1, j - 1] + c
90
+ trace[i, j] = t
91
+
92
+ # backtrace
93
+ i = trace.shape[0] - 1
94
+ j = trace.shape[1] - 1
95
+ trace[0, :] = 2
96
+ trace[:, 0] = 1
97
+
98
+ text_indices = []
99
+ time_indices = []
100
+ while i > 0 or j > 0:
101
+ text_indices.append(i - 1)
102
+ time_indices.append(j - 1)
103
+ if trace[i, j] == 0:
104
+ i -= 1
105
+ j -= 1
106
+ elif trace[i, j] == 1:
107
+ i -= 1
108
+ elif trace[i, j] == 2:
109
+ j -= 1
110
+ else:
111
+ raise RuntimeError(
112
+ f"Internal error in dynamic time warping. Unexpected trace[{i}, {j}]. Please file a bug report."
113
+ )
114
+
115
+ text_indices = np.array(text_indices)[::-1]
116
+ time_indices = np.array(time_indices)[::-1]
117
+ return text_indices, time_indices
118
+
119
+
120
+ def _get_attr_from_logit_processors(logits_processor, logit_processor_class, attribute_name):
121
+ if logits_processor is not None:
122
+ logit_processor = next((cls for cls in logits_processor if isinstance(cls, logit_processor_class)), None)
123
+ if logit_processor:
124
+ return getattr(logit_processor, attribute_name, None)
125
+ return None
126
+
127
+
128
+ def _pad_to_max_length(
129
+ current_segments,
130
+ pad_token_id,
131
+ device,
132
+ padding_side="right",
133
+ padding="longest",
134
+ bos_token_tensor=None,
135
+ cut_off_length=None,
136
+ ):
137
+ max_total_length = 0
138
+ sequences = []
139
+
140
+ if padding_side not in ["right", "left"]:
141
+ raise ValueError(f"`padding_side` must be either 'right' or 'left', not {padding_side}")
142
+
143
+ if padding not in ["longest", "max_length"]:
144
+ raise ValueError(f"`padding` must be either 'longest' or 'max_length', not {padding}")
145
+ elif padding == "max_length" and cut_off_length is None:
146
+ raise ValueError("`cut_off_length` must be specified when `padding='max_length'`")
147
+
148
+ for current_segment_list in current_segments:
149
+ if current_segment_list is not None and len([d["tokens"] for d in current_segment_list]) > 0:
150
+ sequence = torch.cat([d["tokens"] for d in current_segment_list], dim=-1)
151
+
152
+ if cut_off_length is not None:
153
+ sequence = sequence[-cut_off_length:]
154
+
155
+ if bos_token_tensor is not None:
156
+ sequence = torch.cat([bos_token_tensor, sequence])
157
+
158
+ sequences.append(sequence)
159
+ max_total_length = max(max_total_length, len(sequences[-1]))
160
+ elif bos_token_tensor is not None:
161
+ sequences.append(bos_token_tensor)
162
+ else:
163
+ sequences.append(torch.tensor([], device=device))
164
+
165
+ max_total_length = cut_off_length + 1 if padding == "max_length" else max_total_length
166
+ for i in range(len(current_segments)):
167
+ pad_length = max_total_length - len(sequences[i])
168
+ pad = (0, pad_length) if padding_side == "right" else (pad_length, 0)
169
+ sequences[i] = F.pad(sequences[i], pad=pad, value=pad_token_id)
170
+
171
+ sequences = torch.stack(sequences, dim=0)
172
+ return sequences
173
+
174
+
175
+ class WhisperGenerationMixin:
176
+ def _extract_token_timestamps(self, generate_outputs, alignment_heads, time_precision=0.02, num_frames=None):
177
+ """
178
+ Calculates token-level timestamps using the encoder-decoder cross-attentions and dynamic time-warping (DTW) to
179
+ map each output token to a position in the input audio. If `num_frames` is specified, the encoder-decoder
180
+ cross-attentions will be cropped before applying DTW.
181
+
182
+ Returns:
183
+ tensor containing the timestamps in seconds for each predicted token
184
+ """
185
+ # Create a list with `decoder_layers` elements, each a tensor of shape
186
+ # (batch size, attention_heads, output length, input length).
187
+ cross_attentions = []
188
+ for i in range(self.config.decoder_layers):
189
+ cross_attentions.append(torch.cat([x[i] for x in generate_outputs.cross_attentions], dim=2))
190
+
191
+ # Select specific cross-attention layers and heads. This is a tensor
192
+ # of shape (batch size, num selected, output length, input length).
193
+ weights = torch.stack([cross_attentions[l][:, h] for l, h in alignment_heads])
194
+ weights = weights.permute([1, 0, 2, 3])
195
+
196
+ weight_length = None
197
+
198
+ if "beam_indices" in generate_outputs:
199
+ # If beam search has been used, the output sequences may have been generated for more timesteps than their sequence_lengths
200
+ # since the beam search strategy chooses the most probable sequences at the end of the search.
201
+ # In that case, the cross_attentions weights are too long and we have to make sure that they have the right output_length
202
+ weight_length = (generate_outputs.beam_indices != -1).sum(-1).max()
203
+ weights = weights[:, :, :weight_length]
204
+
205
+ # If beam index is still -1, it means that the associated token id is EOS
206
+ # We need to replace the index with 0 since index_select gives an error if any of the indexes is -1.
207
+ beam_indices = generate_outputs.beam_indices[:, :weight_length]
208
+ beam_indices = beam_indices.masked_fill(beam_indices == -1, 0)
209
+
210
+ # Select the cross attention from the right beam for each output sequences
211
+ weights = torch.stack(
212
+ [
213
+ torch.index_select(weights[:, :, i, :], dim=0, index=beam_indices[:, i])
214
+ for i in range(beam_indices.shape[1])
215
+ ],
216
+ dim=2,
217
+ )
218
+
219
+ # make sure timestamps are as long as weights
220
+ input_length = weight_length or cross_attentions[0].shape[2]
221
+ timestamps = torch.zeros_like(generate_outputs.sequences, dtype=torch.float32)[:, : input_length + 1]
222
+ batch_size = timestamps.shape[0]
223
+
224
+ if num_frames is not None:
225
+ # two cases:
226
+ # 1. num_frames is the same for each sample -> compute the DTW matrix for each sample in parallel
227
+ # 2. num_frames is different, compute the DTW matrix for each sample sequentially
228
+
229
+ # we're using np.unique because num_frames can be int/list/tuple
230
+ if isinstance(num_frames, int):
231
+ weights = weights[..., : num_frames // 2]
232
+
233
+ elif isinstance(num_frames, (list, tuple, np.ndarray)) and len(np.unique(num_frames)) == 1:
234
+ weights = weights[..., : num_frames[0] // 2]
235
+
236
+ elif isinstance(num_frames, (torch.Tensor)) and len(torch.unique(num_frames)) == 1:
237
+ weights = weights[..., : num_frames[0] // 2]
238
+
239
+ else:
240
+ # num_frames is of shape (batch_size,) whereas batch_size is truely batch_size*num_return_sequences
241
+ repeat_time = batch_size if isinstance(num_frames, int) else batch_size // len(num_frames)
242
+ num_frames = np.repeat(num_frames, repeat_time)
243
+
244
+ if num_frames is None or isinstance(num_frames, int):
245
+ # Normalize and smoothen the weights.
246
+ std = torch.std(weights, dim=-2, keepdim=True, unbiased=False)
247
+ mean = torch.mean(weights, dim=-2, keepdim=True)
248
+ weights = (weights - mean) / std
249
+ weights = _median_filter(weights, self.config.median_filter_width)
250
+
251
+ # Average the different cross-attention heads.
252
+ weights = weights.mean(dim=1)
253
+
254
+ # Perform dynamic time warping on each element of the batch.
255
+ for batch_idx in range(batch_size):
256
+ if num_frames is not None and isinstance(num_frames, (tuple, list, np.ndarray, torch.Tensor)):
257
+ matrix = weights[batch_idx, ..., : num_frames[batch_idx] // 2]
258
+
259
+ # Normalize and smoothen the weights.
260
+ std = torch.std(matrix, dim=-2, keepdim=True, unbiased=False)
261
+ mean = torch.mean(matrix, dim=-2, keepdim=True)
262
+ matrix = (matrix - mean) / std
263
+ matrix = _median_filter(matrix, self.config.median_filter_width)
264
+
265
+ # Average the different cross-attention heads.
266
+ matrix = matrix.mean(dim=0)
267
+ else:
268
+ matrix = weights[batch_idx]
269
+
270
+ text_indices, time_indices = _dynamic_time_warping(-matrix.cpu().double().numpy())
271
+ jumps = np.pad(np.diff(text_indices), (1, 0), constant_values=1).astype(bool)
272
+ jump_times = time_indices[jumps] * time_precision
273
+ timestamps[batch_idx, 1:] = torch.tensor(jump_times)
274
+
275
+ return timestamps
276
+
277
+ def generate(
278
+ self,
279
+ input_features: Optional[torch.Tensor] = None,
280
+ generation_config: Optional[GenerationConfig] = None,
281
+ logits_processor: Optional[LogitsProcessorList] = None,
282
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
283
+ prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
284
+ synced_gpus: bool = False,
285
+ return_timestamps: Optional[bool] = None,
286
+ task: Optional[str] = None,
287
+ language: Optional[Union[str, List[str]]] = None,
288
+ is_multilingual: Optional[bool] = None,
289
+ prompt_ids: Optional[torch.Tensor] = None,
290
+ prompt_condition_type: Optional[str] = None, # first-segment, all-segments
291
+ condition_on_prev_tokens: Optional[bool] = None,
292
+ temperature: Optional[Union[float, Tuple[float, ...]]] = None,
293
+ compression_ratio_threshold: Optional[float] = None,
294
+ logprob_threshold: Optional[float] = None,
295
+ no_speech_threshold: Optional[float] = None,
296
+ num_segment_frames: Optional[int] = None,
297
+ attention_mask: Optional[torch.Tensor] = None,
298
+ time_precision: float = 0.02,
299
+ return_token_timestamps: Optional[bool] = None,
300
+ return_segments: bool = False,
301
+ return_dict_in_generate: Optional[bool] = None,
302
+ **kwargs,
303
+ ):
304
+ """
305
+ Transcribes or translates log-mel input features to a sequence of auto-regressively generated token ids.
306
+
307
+ <Tip warning={true}>
308
+
309
+ Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
310
+ model's default generation configuration. You can override any `generation_config` by passing the corresponding
311
+ parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
312
+
313
+ For an overview of generation strategies and code examples, check out the [following
314
+ guide](./generation_strategies).
315
+
316
+ </Tip>
317
+
318
+ Parameters:
319
+ input_features (`torch.Tensor` of shape `(batch_size, feature_size, sequence_length)`, *optional*):
320
+ Float values of log-mel features extracted from the raw speech waveform. The raw speech waveform can be obtained by
321
+ loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
322
+ the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
323
+ [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
324
+ tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] for details.
325
+ generation_config (`~generation.GenerationConfig`, *optional*):
326
+ The generation configuration to be used as base parametrization for the generation call. `**kwargs`
327
+ passed to generate matching the attributes of `generation_config` will override them. If
328
+ `generation_config` is not provided, the default will be used, which had the following loading
329
+ priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
330
+ configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
331
+ default values, whose documentation should be checked to parameterize generation.
332
+ logits_processor (`LogitsProcessorList`, *optional*):
333
+ Custom logits processors that complement the default logits processors built from arguments and
334
+ generation config. If a logit processor is passed that is already created with the arguments or a
335
+ generation config an error is thrown. This feature is intended for advanced users.
336
+ stopping_criteria (`StoppingCriteriaList`, *optional*):
337
+ Custom stopping criteria that complement the default stopping criteria built from arguments and a
338
+ generation config. If a stopping criteria is passed that is already created with the arguments or a
339
+ generation config an error is thrown. This feature is intended for advanced users.
340
+ prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
341
+ If provided, this function constraints the beam search to allowed tokens only at each step. If not
342
+ provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
343
+ `input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
344
+ on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful
345
+ for constrained generation conditioned on the prefix, as described in [Autoregressive Entity
346
+ Retrieval](https://arxiv.org/abs/2010.00904).
347
+ synced_gpus (`bool`, *optional*, defaults to `False`):
348
+ Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
349
+ return_timestamps (`bool`, *optional*):
350
+ Whether to return the timestamps with the text. This enables the `WhisperTimestampsLogitsProcessor`.
351
+ task (`str`, *optional*):
352
+ Task to use for generation, either "translate" or "transcribe". The `model.config.forced_decoder_ids`
353
+ will be updated accordingly.
354
+ language (`str` or list of `str`, *optional*):
355
+ Language token to use for generation, can be either in the form of `<|en|>`, `en` or `english`. For
356
+ batched generation, a list of language tokens can be passed. You can find all the possible language
357
+ tokens in the `model.generation_config.lang_to_id` dictionary.
358
+ is_multilingual (`bool`, *optional*):
359
+ Whether or not the model is multilingual.
360
+ prompt_ids (`torch.Tensor`, *optional*):
361
+ Rank-1 tensor of token IDs created by passing text to [`~WhisperProcessor.get_prompt_ids`] that is
362
+ provided as a prompt to each chunk. This can be used to provide or "prompt-engineer" a context for
363
+ transcription, e.g. custom vocabularies or proper nouns to make it more likely to predict those words
364
+ correctly. It cannot be used in conjunction with `decoder_start_token_id` as it overwrites this value.
365
+ prompt_condition_type (`str`, *optional*):
366
+ Only relevant for long-form transcription. Condition type of `prompt_ids`. 'first-segment' means only the first segment is conditioned on `prompt_ids`. 'all-segments' means each segment is conditioned on `prompt_ids`. Make sure to enable `condition_on_prev_tokens` for 'all-segments'.
367
+ Defaults to 'first-segment'. For short-term transcription only 'first-segment' is possible.
368
+ condition_on_prev_tokens (`bool`, *optional*):
369
+ Only relevant for long-form transcription. Whether to condition each segment on the previous segment.
370
+ As shown in the [the Whisper paper](https://cdn.openai.com/papers/whisper.pdf), this can help to improve
371
+ performance.
372
+ temperature (`float` or list of `float`, *optional*):
373
+ The temperature to be used for generation. Passing a single `float` value and `do_sample=True` activates
374
+ generation using sampling. For long-form transcription, temperature fallback can be activated by passing
375
+ a list of float values such as (0.0, 0.2, 0.4, 0.6, 0.8, 1.0). As shown in the [the Whisper paper](https://cdn.openai.com/papers/whisper.pdf), this can help to improve
376
+ performance.
377
+ compression_ratio_threshold (`float`, *optional*):
378
+ Only relevant for long-form transcription. If defined, the zlib compression rate of each segment will be computed. If the compression rate of
379
+ a segment is higher than `compression_ratio_threshold`, temperature fallback is activated: the generated segment is discarded and the generation is
380
+ repeated using a higher temperature. The intuition behind this feature is that segments with very high compression rates
381
+ suffer from a lot of repetition. The unwanted repetition can be reduced by injecting more randomness by increasing the temperature. If `compression_ratio_threshold` is defined
382
+ make sure that `temperature` is a list of values. A common value for `compression_ratio_threshold` is 1.35.
383
+ As shown in the [the Whisper paper](https://cdn.openai.com/papers/whisper.pdf), this can help to improve
384
+ performance.
385
+ logprob_threshold (`float`, *optional*):
386
+ Only relevant for long-form transcription. If defined, the average log-probability of each segment will be computed. If the log-probability of
387
+ a given segment is lower than `logprob_threshold`, temperature fallback is activated: the generated segment is discarded and the generation is
388
+ repeated using a higher temperature. The intuition behind this feature is that segments of low log-probability
389
+ can be improved by injecting more randomness by increasing the temperature. If `logprob_threshold` is defined
390
+ make sure that `temperature` is a list of values. A common value for `logprob_threshold` is -1.0.
391
+ As shown in the [the Whisper paper](https://cdn.openai.com/papers/whisper.pdf), this can help to improve
392
+ performance.
393
+ no_speech_threshold (`float`, *optional*):
394
+ Only relevant for long-form transcription. If defined, the "no-speech" token combined with the `logprob_threshold`
395
+ is used to determine whether a segment contains only silence. In this case, the transcription for this segment
396
+ is skipped.
397
+ As shown in the [the Whisper paper](https://cdn.openai.com/papers/whisper.pdf), this can help to improve
398
+ performance.
399
+ num_segment_frames (`int`, *optional*):
400
+ The number of frames a single segment is made of. If not defined, `num_segment_frames` defaults to the model's stride
401
+ times the maximum input length.
402
+ attention_mask (`torch.Tensor`, *optional*):
403
+ `attention_mask` needs to be passed when doing long-form transcription using a batch size > 1.
404
+ time_precision (`int`, *optional*, defaults to 0.02):
405
+ The duration of output token in seconds. *E.g.* 0.02 means that a generated token on average accounts
406
+ for 20 ms.
407
+ return_token_timestamps (`bool`, *optional*):
408
+ Whether to return token-level timestamps with the text. This can be used with or without the
409
+ `return_timestamps` option. To get word-level timestamps, use the tokenizer to group the tokens into
410
+ words.
411
+ return_segments (`bool`, *optional*, defaults to `False`):
412
+ Whether to additionally return a list of all segments. Note that this option can only be enabled
413
+ when doing long-form transcription.
414
+ return_dict_in_generate (`bool`, *optional*, defaults to `False`):
415
+ Whether or not to return a [`~utils.ModelOutput`] instead of just returning the generated tokens.
416
+ Note that when doing long-form transcription, `return_dict_in_generate` can only be enabled when
417
+ `return_segments` is set True. In this case the generation outputs of each segment is added to each
418
+ segment.
419
+ kwargs (`Dict[str, Any]`, *optional*):
420
+ Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
421
+ forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
422
+ specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
423
+
424
+ Return:
425
+ [`~utils.ModelOutput`] or `torch.LongTensor` or `Dict[str, Any]`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
426
+ or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor` or a dict of segments when `return_segments=True`.
427
+
428
+ If the passed input is > 30 seconds / > 3000 mel input features and `return_segments=True` then a dictionary of generated sequence ids, called `sequences` and a list of each generated segment is returned.
429
+
430
+ else if the passed input is <= 30 seconds / >= 3000 mel input features, the possible [`~utils.ModelOutput`] types are:
431
+
432
+ - [`~generation.GenerateEncoderDecoderOutput`],
433
+ - [`~generation.GenerateBeamEncoderDecoderOutput`]
434
+
435
+ else only the generated output sequence ids are returned.
436
+
437
+ Example:
438
+
439
+ - *Longform transcription*: To transcribe or translate audios longer than 30 seconds, process the audio files without truncation and pass all mel features at once to generate.
440
+
441
+ ```python
442
+ >>> import torch
443
+ >>> from transformers import AutoProcessor, WhisperForConditionalGeneration
444
+ >>> from datasets import load_dataset, Audio
445
+
446
+ >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
447
+ >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
448
+ >>> model.cuda() # doctest: +IGNORE_RESULT
449
+
450
+ >>> # load audios > 30 seconds
451
+ >>> ds = load_dataset("distil-whisper/meanwhile", "default")["test"]
452
+ >>> # resample to 16kHz
453
+ >>> ds = ds.cast_column("audio", Audio(sampling_rate=16000))
454
+ >>> # take first 8 audios and retrieve array
455
+ >>> audio = ds[:8]["audio"]
456
+ >>> audio = [x["array"] for x in audio]
457
+
458
+ >>> # make sure to NOT truncate the input audio, to return the `attention_mask` and to pad to the longest audio
459
+ >>> inputs = processor(audio, return_tensors="pt", truncation=False, padding="longest", return_attention_mask=True, sampling_rate=16_000)
460
+ >>> inputs = inputs.to("cuda", torch.float32)
461
+
462
+ >>> # transcribe audio to ids
463
+ >>> generated_ids = model.generate(**inputs)
464
+
465
+ >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)
466
+ >>> transcription[0]
467
+ " Folks, if you watch the show, you know, I spent a lot of time right over there. Patiently and astutely scrutinizing the boxwood and mahogany chest set of the day's biggest stories developing the central headline pawns, definitely maneuvering an oso topical night to F6, fainting a classic Sicilian, nade door variation on the news, all the while seeing eight moves deep and patiently marshalling the latest press releases into a fisher's shows in Lip Nitsky attack that culminates in the elegant lethal slow-played, all-passant checkmate that is my nightly monologue. But sometimes, sometimes, folks, I. CHEERING AND APPLAUSE Sometimes I startle away, cubside down in the monkey bars of a condemned playground on a super fun site. Get all hept up on goofballs. Rummage that were discarded tag bag of defective toys. Yank out a fist bowl of disembodied doll limbs, toss them on a stained kid's place mat from a defunct dennies. set up a table inside a rusty cargo container down by the Wharf and challenged toothless drifters to the godless bughouse blitz of tournament that is my segment. Meanwhile."
468
+ ```
469
+
470
+ - *Shortform transcription*: If passed mel input features are < 30 seconds, the whole audio will be transcribed with a single call to generate.
471
+
472
+ ```python
473
+ >>> import torch
474
+ >>> from transformers import AutoProcessor, WhisperForConditionalGeneration
475
+ >>> from datasets import load_dataset
476
+
477
+ >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
478
+ >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
479
+
480
+ >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
481
+
482
+ >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")
483
+ >>> input_features = inputs.input_features
484
+
485
+ >>> generated_ids = model.generate(inputs=input_features)
486
+
487
+ >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
488
+ >>> transcription
489
+ ' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.'
490
+ ```
491
+
492
+ """
493
+ # 0. deprecate old inputs
494
+ if "inputs" in kwargs:
495
+ input_features = kwargs.pop("inputs")
496
+ warnings.warn(
497
+ "The input name `inputs` is deprecated. Please make sure to use `input_features` instead.",
498
+ FutureWarning,
499
+ )
500
+
501
+ # 1. prepare generation config
502
+ generation_config, kwargs = self._prepare_generation_config(generation_config, **kwargs)
503
+
504
+ # 2. set global generate variables
505
+ input_stride = self.model.encoder.conv1.stride[0] * self.model.encoder.conv2.stride[0]
506
+ num_segment_frames = input_stride * self.config.max_source_positions
507
+ batch_size, total_input_frames = self._retrieve_total_input_frames(
508
+ input_features=input_features, input_stride=input_stride, kwargs=kwargs
509
+ )
510
+ is_shortform = total_input_frames <= num_segment_frames
511
+
512
+ # 3. Make sure generation config is correctly set
513
+ # Make sure the generation config is correctly set depending on whether timestamps are to be returned or not
514
+ return_dict_in_generate = self._set_return_outputs(
515
+ return_dict_in_generate=return_dict_in_generate,
516
+ return_token_timestamps=return_token_timestamps,
517
+ logprob_threshold=logprob_threshold,
518
+ generation_config=generation_config,
519
+ )
520
+ timestamp_begin = self._set_return_timestamps(
521
+ return_timestamps=return_timestamps, is_shortform=is_shortform, generation_config=generation_config
522
+ )
523
+ self._set_language_and_task(
524
+ language=language, task=task, is_multilingual=is_multilingual, generation_config=generation_config
525
+ )
526
+ self._set_num_frames(
527
+ return_token_timestamps=return_token_timestamps, generation_config=generation_config, kwargs=kwargs
528
+ )
529
+ self._set_thresholds_and_condition(
530
+ generation_config=generation_config,
531
+ logprob_threshold=logprob_threshold,
532
+ compression_ratio_threshold=compression_ratio_threshold,
533
+ no_speech_threshold=no_speech_threshold,
534
+ condition_on_prev_tokens=condition_on_prev_tokens,
535
+ )
536
+ self._set_prompt_condition_type(
537
+ generation_config=generation_config,
538
+ prompt_condition_type=prompt_condition_type,
539
+ )
540
+
541
+ kwargs["attention_mask"] = attention_mask
542
+ # pass self.config for backward compatibility
543
+ init_tokens = self._retrieve_init_tokens(
544
+ input_features,
545
+ batch_size=batch_size,
546
+ generation_config=generation_config,
547
+ config=self.config,
548
+ num_segment_frames=num_segment_frames,
549
+ kwargs=kwargs,
550
+ )
551
+ # passing `decoder_input_ids` is deprecated - the only exception is for assisted generation
552
+ # where the input ids are handled explicitly by the generate method
553
+ self._check_decoder_input_ids(kwargs=kwargs)
554
+
555
+ # 3. Retrieve logits processors
556
+ device = kwargs["encoder_outputs"][0].device if "encoder_outputs" in kwargs else input_features.device
557
+ begin_index = init_tokens.shape[1]
558
+ logits_processor = self._retrieve_logit_processors(
559
+ generation_config=generation_config,
560
+ logits_processor=logits_processor,
561
+ begin_index=begin_index, # begin index is index of first generated decoder token
562
+ num_beams=kwargs.get("num_beams", 1),
563
+ device=device,
564
+ )
565
+
566
+ # 4 Set and retrieve global generation variables
567
+ self._set_condition_on_prev_tokens(
568
+ condition_on_prev_tokens=condition_on_prev_tokens, generation_config=generation_config
569
+ )
570
+
571
+ temperatures = [temperature] if not isinstance(temperature, (list, tuple)) else temperature
572
+ temperature = temperatures[0]
573
+
574
+ max_frames, seek = self._retrieve_max_frames_and_seek(
575
+ batch_size=batch_size,
576
+ attention_mask=attention_mask,
577
+ total_input_frames=total_input_frames,
578
+ is_shortform=is_shortform,
579
+ )
580
+
581
+ # 5 Prepare running variables, list for generation
582
+ num_return_sequences = generation_config.num_return_sequences
583
+ (
584
+ batch_idx_map,
585
+ cur_bsz,
586
+ input_features,
587
+ seek,
588
+ max_frames,
589
+ init_tokens,
590
+ do_condition_on_prev_tokens,
591
+ ) = self._expand_variables_for_generation(
592
+ input_features=input_features,
593
+ seek=seek,
594
+ max_frames=max_frames,
595
+ init_tokens=init_tokens,
596
+ batch_size=batch_size,
597
+ condition_on_prev_tokens=condition_on_prev_tokens,
598
+ generation_config=generation_config,
599
+ )
600
+
601
+ current_segments = self._prepare_segments(
602
+ prompt_ids=prompt_ids,
603
+ batch_size=cur_bsz,
604
+ generation_config=generation_config,
605
+ )
606
+
607
+ # 6 Transcribe audio until we reach the end of all input audios
608
+ while (seek < max_frames).any():
609
+ # 6.1 NOTE: When in longform transcription mode and batch size > 1 we need to dynamically reduce the batch size during the loop
610
+ # in case one audio finished earlier than another one. Thus, we need to keep a table of "previous-index-2-current-index" in order
611
+ # to know which original audio is being decoded
612
+ # Set updated index map, duration of previously decoded chunks and number of max frames of current decoding chunk
613
+ input_features, cur_bsz, batch_idx_map = self._maybe_reduce_batch(
614
+ input_features=input_features,
615
+ seek=seek,
616
+ max_frames=max_frames,
617
+ cur_bsz=cur_bsz,
618
+ batch_idx_map=batch_idx_map,
619
+ )
620
+ time_offset = seek * time_precision / input_stride
621
+ seek_num_frames = (max_frames - seek).clamp(max=num_segment_frames)
622
+
623
+ # 6.2 cut out next 30s segment from input features
624
+ segment_input = self._get_input_segment(
625
+ input_features=input_features,
626
+ seek=seek,
627
+ seek_num_frames=seek_num_frames,
628
+ num_segment_frames=num_segment_frames,
629
+ cur_bsz=cur_bsz,
630
+ batch_idx_map=batch_idx_map,
631
+ )
632
+
633
+ # 6.3 prepare decoder input ids
634
+ suppress_tokens = _get_attr_from_logit_processors(
635
+ logits_processor, SuppressTokensLogitsProcessor, "suppress_tokens"
636
+ )
637
+
638
+ decoder_input_ids, kwargs = self._prepare_decoder_input_ids(
639
+ cur_bsz=cur_bsz,
640
+ init_tokens=init_tokens,
641
+ current_segments=current_segments,
642
+ batch_idx_map=batch_idx_map,
643
+ do_condition_on_prev_tokens=do_condition_on_prev_tokens,
644
+ prompt_ids=prompt_ids,
645
+ generation_config=generation_config,
646
+ config=self.config,
647
+ device=init_tokens.device,
648
+ suppress_tokens=suppress_tokens,
649
+ kwargs=kwargs,
650
+ )
651
+
652
+ # 6.4 set max new tokens or max length
653
+ self._set_max_new_tokens_and_length(
654
+ config=self.config,
655
+ decoder_input_ids=decoder_input_ids,
656
+ generation_config=generation_config,
657
+ )
658
+
659
+ # 6.5 Set current `begin_index` for all logit processors
660
+ if logits_processor is not None:
661
+ for proc in logits_processor:
662
+ if hasattr(proc, "set_begin_index"):
663
+ proc.set_begin_index(decoder_input_ids.shape[-1])
664
+
665
+ # 6.6 Run generate with fallback
666
+ (
667
+ seek_sequences,
668
+ seek_outputs,
669
+ should_skip,
670
+ do_condition_on_prev_tokens,
671
+ model_output_type,
672
+ ) = self.generate_with_fallback(
673
+ segment_input=segment_input,
674
+ decoder_input_ids=decoder_input_ids,
675
+ cur_bsz=cur_bsz,
676
+ batch_idx_map=batch_idx_map,
677
+ seek=seek,
678
+ num_segment_frames=num_segment_frames,
679
+ max_frames=max_frames,
680
+ temperatures=temperatures,
681
+ generation_config=generation_config,
682
+ logits_processor=logits_processor,
683
+ stopping_criteria=stopping_criteria,
684
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
685
+ synced_gpus=synced_gpus,
686
+ return_token_timestamps=return_token_timestamps,
687
+ do_condition_on_prev_tokens=do_condition_on_prev_tokens,
688
+ is_shortform=is_shortform,
689
+ batch_size=batch_size,
690
+ kwargs=kwargs,
691
+ )
692
+
693
+ # 6.7 In every generated sequence, split by timestamp tokens and extract segments
694
+ for i, seek_sequence in enumerate(seek_sequences):
695
+ prev_i = batch_idx_map[i]
696
+
697
+ if should_skip[i]:
698
+ seek[prev_i] += seek_num_frames[prev_i]
699
+ continue
700
+
701
+ segments, segment_offset = self._retrieve_segment(
702
+ seek_sequence=seek_sequence,
703
+ seek_outputs=seek_outputs,
704
+ time_offset=time_offset,
705
+ timestamp_begin=timestamp_begin,
706
+ seek_num_frames=seek_num_frames,
707
+ time_precision=time_precision,
708
+ input_stride=input_stride,
709
+ prev_idx=prev_i,
710
+ idx=i,
711
+ return_token_timestamps=return_token_timestamps,
712
+ )
713
+
714
+ current_segments[prev_i] += segments
715
+
716
+ if is_shortform:
717
+ seek[prev_i] += max_frames[i]
718
+ else:
719
+ seek[prev_i] += segment_offset
720
+
721
+ # 7. Once all segments are added to the list of all segments, called `current_segments`, we extract the predicted
722
+ # output tokens from the list of dicts. If we use batch size > 1, we make sure to pad the output
723
+ final_segments = (
724
+ [x[1:] for x in current_segments]
725
+ if (prompt_ids is not None and generation_config.prompt_condition_type == "first-segment")
726
+ else current_segments
727
+ )
728
+
729
+ sequences = _pad_to_max_length(
730
+ final_segments, generation_config.pad_token_id, device=self.device, padding_side="right"
731
+ )
732
+
733
+ # 8. If we return all segments, the predicted output sequences are put under `"sequences"`.
734
+ if return_segments:
735
+ return {"sequences": sequences, "segments": final_segments}
736
+
737
+ if is_shortform:
738
+ # add eos token:
739
+ if generation_config.max_new_tokens is None and generation_config.max_length is None:
740
+ eos_tokens = torch.full((sequences.shape[0], 1), generation_config.eos_token_id)
741
+ sequences = torch.cat([sequences, eos_tokens], dim=-1)
742
+
743
+ if return_token_timestamps:
744
+ outputs = {}
745
+ outputs["sequences"] = sequences
746
+ outputs["token_timestamps"] = torch.stack([d["token_timestamps"] for d in seek_outputs], dim=0)
747
+ else:
748
+ outputs = sequences
749
+
750
+ if return_dict_in_generate and generation_config.return_dict_in_generate:
751
+ dict_outputs = self._stack_split_outputs(seek_outputs, model_output_type, sequences.device, kwargs)
752
+
753
+ if num_return_sequences > 1:
754
+ if hasattr(dict_outputs, "encoder_attentions") and dict_outputs.encoder_attentions is not None:
755
+ dict_outputs.encoder_attentions = tuple(
756
+ dict_outputs.encoder_attentions[i][::num_return_sequences]
757
+ for i in range(len(dict_outputs.encoder_attentions))
758
+ )
759
+ if (
760
+ hasattr(dict_outputs, "encoder_hidden_states")
761
+ and dict_outputs.encoder_hidden_states is not None
762
+ ):
763
+ dict_outputs.encoder_hidden_states = tuple(
764
+ dict_outputs.encoder_hidden_states[i][::num_return_sequences]
765
+ for i in range(len(dict_outputs.encoder_hidden_states))
766
+ )
767
+ if return_token_timestamps:
768
+ dict_outputs["token_timestamps"] = outputs["token_timestamps"]
769
+ return dict_outputs
770
+
771
+ return outputs
772
+
773
+ return sequences
774
+
775
+ def generate_with_fallback(
776
+ self,
777
+ segment_input,
778
+ decoder_input_ids,
779
+ cur_bsz,
780
+ batch_idx_map,
781
+ seek,
782
+ num_segment_frames,
783
+ max_frames,
784
+ temperatures,
785
+ generation_config,
786
+ logits_processor,
787
+ stopping_criteria,
788
+ prefix_allowed_tokens_fn,
789
+ synced_gpus,
790
+ return_token_timestamps,
791
+ do_condition_on_prev_tokens,
792
+ is_shortform,
793
+ batch_size,
794
+ kwargs,
795
+ ):
796
+ kwargs = copy.copy(kwargs)
797
+
798
+ # 6.6 Batch generate current chunk
799
+ seek_sequence_list = [None for _ in range(cur_bsz)]
800
+ seek_outputs_list = [None for _ in range(cur_bsz)]
801
+ needs_fallback = [False for _ in range(cur_bsz)]
802
+ should_skip = [False for _ in range(cur_bsz)]
803
+ fallback_index_map = list(range(cur_bsz))
804
+ if generation_config.no_speech_threshold is not None:
805
+ self._setup_no_speech_detection(logits_processor, segment_input, decoder_input_ids, kwargs)
806
+
807
+ for fallback_idx, temperature in enumerate(temperatures):
808
+ generation_config.do_sample = temperature is not None and temperature > 0.0
809
+ generation_config.temperature = temperature if generation_config.do_sample else 1.0
810
+ if generation_config.do_sample:
811
+ generation_config.num_beams = 1
812
+
813
+ generate_kwargs = copy.copy(kwargs)
814
+ for key in ["do_sample", "temperature", "num_beams"]:
815
+ if key in generate_kwargs:
816
+ del generate_kwargs[key]
817
+
818
+ cur_bsz = decoder_input_ids.shape[0]
819
+ if generation_config.cache_implementation == "static" and cur_bsz < batch_size:
820
+ segment_input = F.pad(segment_input, (0, 0, 0, 0, 0, batch_size - cur_bsz), value=0)
821
+ decoder_input_ids = F.pad(
822
+ decoder_input_ids, (0, 0, 0, batch_size - cur_bsz), value=generation_config.pad_token_id
823
+ )
824
+ if generate_kwargs.get("decoder_attention_mask") is not None:
825
+ generate_kwargs["decoder_attention_mask"] = F.pad(
826
+ generate_kwargs["decoder_attention_mask"], (0, 0, 0, batch_size - cur_bsz), value=True
827
+ )
828
+ if generate_kwargs.get("encoder_outputs") is not None:
829
+ generate_kwargs["encoder_outputs"] = F.pad(
830
+ generate_kwargs["encoder_outputs"], (0, 0, 0, 0, 0, batch_size - cur_bsz), value=0
831
+ )
832
+
833
+ seek_outputs = super().generate(
834
+ segment_input,
835
+ generation_config=generation_config,
836
+ logits_processor=logits_processor,
837
+ stopping_criteria=stopping_criteria,
838
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
839
+ synced_gpus=synced_gpus,
840
+ decoder_input_ids=decoder_input_ids,
841
+ **generate_kwargs,
842
+ )
843
+
844
+ model_output_type = type(seek_outputs)
845
+
846
+ # post-process sequence tokens and outputs to be in list form
847
+ seek_sequences, seek_outputs = self._postprocess_outputs(
848
+ seek_outputs=seek_outputs,
849
+ decoder_input_ids=decoder_input_ids,
850
+ return_token_timestamps=return_token_timestamps,
851
+ generation_config=generation_config,
852
+ is_shortform=is_shortform,
853
+ )
854
+
855
+ if cur_bsz < batch_size:
856
+ seek_sequences = seek_sequences[:cur_bsz]
857
+ seek_outputs = seek_outputs[:cur_bsz]
858
+
859
+ # 6.7 Extract cut sequences from every sequence and check if fallback should be applied
860
+ # Loop over each decoded audio individually as each decoding can be of a different length
861
+ new_fallback_index_map = []
862
+ new_segment_input = []
863
+ new_decoder_input_ids = []
864
+ new_decoder_attention_mask = []
865
+
866
+ for i, seek_sequence in enumerate(seek_sequences):
867
+ # make sure we cut a predicted EOS token if we are not finished with the generation yet
868
+ prev_i = batch_idx_map[fallback_index_map[i]]
869
+ is_not_final = (seek[prev_i] + num_segment_frames) < max_frames[prev_i]
870
+
871
+ # remove eos token id
872
+ if is_not_final and seek_sequence[-1] == generation_config.eos_token_id:
873
+ seek_sequence = seek_sequence[:-1]
874
+ if return_token_timestamps and not is_shortform:
875
+ seek_outputs[i]["token_timestamps"] = seek_outputs[i]["token_timestamps"][:-1]
876
+
877
+ # remove all padding tokens
878
+ if seek_sequence[-1] == generation_config.pad_token_id:
879
+ num_paddings = (seek_sequence == generation_config.pad_token_id).sum()
880
+ seek_sequence = seek_sequence[:-num_paddings]
881
+ if return_token_timestamps and not is_shortform:
882
+ seek_outputs[i]["token_timestamps"] = seek_outputs[i]["token_timestamps"][:-num_paddings]
883
+
884
+ # check which sequences in batch need fallback & which should be skipped
885
+ needs_fallback[i], should_skip[i] = self._need_fallback(
886
+ seek_sequence,
887
+ seek_outputs,
888
+ i,
889
+ logits_processor,
890
+ generation_config,
891
+ self.config.vocab_size,
892
+ temperature,
893
+ )
894
+
895
+ seek_sequence_list[fallback_index_map[i]] = seek_sequence
896
+ seek_outputs_list[fallback_index_map[i]] = seek_outputs[i]
897
+ is_low_temperature = temperature is None or temperature < 0.5
898
+ do_condition_on_prev_tokens[fallback_index_map[i]] = (
899
+ generation_config.condition_on_prev_tokens and is_low_temperature
900
+ )
901
+
902
+ if needs_fallback[i]:
903
+ new_fallback_index_map.append(fallback_index_map[i])
904
+ new_segment_input.append(segment_input[i])
905
+ new_decoder_input_ids.append(decoder_input_ids[i])
906
+ if "decoder_attention_mask" in kwargs:
907
+ new_decoder_attention_mask.append(kwargs["decoder_attention_mask"][i])
908
+
909
+ fallback_index_map = new_fallback_index_map
910
+
911
+ # if no sequence needs to be run with temperature fallback, we're finished
912
+ if len(fallback_index_map) == 0 or fallback_idx == len(temperatures) - 1:
913
+ seek_sequences = seek_sequence_list
914
+ seek_outputs = seek_outputs_list
915
+ break
916
+
917
+ # if we're still in the loop, make sure that decoder_input_ids and segment inputs are tensors
918
+ decoder_input_ids = torch.stack(new_decoder_input_ids)
919
+ segment_input = torch.stack(new_segment_input)
920
+ if "decoder_attention_mask" in kwargs:
921
+ kwargs["decoder_attention_mask"] = torch.stack(new_decoder_attention_mask)
922
+
923
+ return seek_sequences, seek_outputs, should_skip, do_condition_on_prev_tokens, model_output_type
924
+
925
+ @staticmethod
926
+ def _prepare_segments(prompt_ids, batch_size, generation_config):
927
+ if prompt_ids is not None and generation_config.prompt_condition_type == "first-segment":
928
+ prev_sot_token_id = getattr(generation_config, "prev_sot_token_id", None)
929
+ prompt_ids = prompt_ids[1:] if prompt_ids[0] == prev_sot_token_id else prompt_ids
930
+ current_segments = [[{"tokens": prompt_ids}] for _ in range(batch_size)]
931
+ else:
932
+ current_segments = [[] for _ in range(batch_size)]
933
+
934
+ return current_segments
935
+
936
+ def _postprocess_outputs(
937
+ self, seek_outputs, decoder_input_ids, return_token_timestamps, generation_config, is_shortform
938
+ ):
939
+ # remove all previously passed decoder input ids
940
+ start_idx = decoder_input_ids.shape[-1] if not is_shortform else torch.tensor(0)
941
+
942
+ if isinstance(seek_outputs, torch.Tensor):
943
+ seek_outputs = seek_outputs[:, start_idx:]
944
+ return seek_outputs, seek_outputs
945
+
946
+ if return_token_timestamps and hasattr(generation_config, "alignment_heads"):
947
+ num_frames = getattr(generation_config, "num_frames", None)
948
+ seek_outputs["token_timestamps"] = self._extract_token_timestamps(
949
+ seek_outputs, generation_config.alignment_heads, num_frames=num_frames
950
+ )
951
+ seek_outputs["token_timestamps"] = seek_outputs["token_timestamps"][:, start_idx:]
952
+
953
+ seek_outputs["sequences"] = seek_outputs["sequences"][:, start_idx:]
954
+
955
+ def split_by_batch_index(values, key, batch_idx, is_shortform):
956
+ if key in ["scores", "encoder_attentions", "encoder_hidden_states", "logits"]:
957
+ return [v[batch_idx].cpu() for v in values]
958
+ if key in ["decoder_attentions", "decoder_hidden_states", "cross_attentions"]:
959
+ return tuple(tuple(w[batch_idx][None].cpu() for w in v) for v in values)
960
+ elif key == "past_key_values":
961
+ if not is_shortform:
962
+ # we don't save `past_key_values` as this is too costly for longform
963
+ return None
964
+ elif isinstance(values, EncoderDecoderCache):
965
+ all_past_key_values = []
966
+ for layer_idx in range(self.config.decoder_layers):
967
+ layer_past_key_values = []
968
+ for cache_cls in [values.self_attention_cache, values.cross_attention_cache]:
969
+ for v in [cache_cls.key_cache, cache_cls.value_cache]:
970
+ layer_past_key_values.append(v[layer_idx][batch_idx][None].cpu())
971
+ all_past_key_values.append(tuple(layer_past_key_values))
972
+ return tuple(all_past_key_values)
973
+ else:
974
+ all_past_key_values = []
975
+ for v in range(len(values)):
976
+ layer_past_key_values = []
977
+ for w in values[v]:
978
+ layer_past_key_values.append(w[batch_idx][None].cpu())
979
+ all_past_key_values.append(tuple(layer_past_key_values))
980
+ return tuple(all_past_key_values)
981
+
982
+ return values[batch_idx].cpu()
983
+
984
+ sequence_tokens = seek_outputs["sequences"]
985
+ seek_outputs = [
986
+ {k: split_by_batch_index(v, k, i, is_shortform) for k, v in seek_outputs.items()}
987
+ for i in range(sequence_tokens.shape[0])
988
+ ]
989
+
990
+ return sequence_tokens, seek_outputs
991
+
992
+ def _stack_split_outputs(self, seek_outputs, model_output_type, device, kwargs):
993
+ # Stack back seek_outputs tensors after splitting them with the split_by_batch_index method
994
+ outputs = {}
995
+ for key in seek_outputs[0].keys():
996
+ if key == "sequences":
997
+ outputs[key] = torch.stack([v[key] for v in seek_outputs], dim=0).to(device)
998
+ if key in ["scores", "encoder_attentions", "encoder_hidden_states", "logits"]:
999
+ outputs[key] = tuple(
1000
+ torch.stack([v[key][i] for v in seek_outputs]).to(device) for i in range(len(seek_outputs[0][key]))
1001
+ )
1002
+ if key in ["decoder_attentions", "decoder_hidden_states", "cross_attentions"]:
1003
+ outputs[key] = tuple(
1004
+ tuple(
1005
+ torch.stack([v[key][i][j] for v in seek_outputs]).squeeze(1).to(device)
1006
+ for j in range(len(seek_outputs[0][key][0]))
1007
+ )
1008
+ for i in range(len(seek_outputs[0][key]))
1009
+ )
1010
+ if key == "past_key_values":
1011
+ past_key_value_type = kwargs.get("past_key_values")
1012
+ if seek_outputs[0][key] is not None:
1013
+ outputs[key] = tuple(
1014
+ tuple(
1015
+ torch.stack([v[key][i][j] for v in seek_outputs]).squeeze(1).to(device)
1016
+ for j in range(len(seek_outputs[0][key][0]))
1017
+ )
1018
+ for i in range(len(seek_outputs[0][key]))
1019
+ )
1020
+ if past_key_value_type is not None and isinstance(past_key_value_type, EncoderDecoderCache):
1021
+ outputs[key] = past_key_value_type.from_legacy_cache(outputs[key])
1022
+ else:
1023
+ outputs[key] = None
1024
+
1025
+ return model_output_type(**outputs)
1026
+
1027
+ def _need_fallback(
1028
+ self,
1029
+ seek_sequence,
1030
+ seek_outputs,
1031
+ index,
1032
+ logits_processor,
1033
+ generation_config,
1034
+ vocab_size,
1035
+ temperature,
1036
+ ):
1037
+ needs_fallback = False
1038
+ should_skip = False
1039
+ if generation_config.compression_ratio_threshold is not None:
1040
+ compression_ratio = self._retrieve_compression_ratio(seek_sequence, vocab_size)
1041
+
1042
+ if compression_ratio > generation_config.compression_ratio_threshold:
1043
+ needs_fallback = True
1044
+
1045
+ if generation_config.logprob_threshold is not None:
1046
+ if hasattr(seek_outputs[0], "sequences_scores"):
1047
+ logprobs = [s["sequences_scores"] for s in seek_outputs][index]
1048
+ else:
1049
+ scores = seek_outputs[index]["scores"]
1050
+ logprobs = self._retrieve_avg_logprobs(
1051
+ scores, seek_sequence, generation_config.eos_token_id, temperature
1052
+ )
1053
+
1054
+ if logprobs < generation_config.logprob_threshold:
1055
+ needs_fallback = True
1056
+
1057
+ if generation_config.no_speech_threshold is not None:
1058
+ no_speech_prob = _get_attr_from_logit_processors(
1059
+ logits_processor, WhisperNoSpeechDetection, "no_speech_prob"
1060
+ )
1061
+
1062
+ if (
1063
+ logprobs < generation_config.logprob_threshold
1064
+ and no_speech_prob[index] > generation_config.no_speech_threshold
1065
+ ):
1066
+ needs_fallback = False
1067
+ should_skip = True
1068
+
1069
+ return needs_fallback, should_skip
1070
+
1071
+ def _expand_variables_for_generation(
1072
+ self, input_features, seek, max_frames, init_tokens, batch_size, condition_on_prev_tokens, generation_config
1073
+ ):
1074
+ if generation_config.num_return_sequences is not None and generation_config.num_return_sequences > 1:
1075
+ batch_idx_map = list(range(batch_size * generation_config.num_return_sequences))
1076
+ cur_bsz = len(batch_idx_map)
1077
+ do_condition_on_prev_tokens = [condition_on_prev_tokens for _ in range(len(batch_idx_map))]
1078
+ input_features = input_features.repeat_interleave(generation_config.num_return_sequences, dim=0)
1079
+ seek = seek.repeat_interleave(generation_config.num_return_sequences, dim=0)
1080
+ max_frames = max_frames.repeat_interleave(generation_config.num_return_sequences, dim=0)
1081
+ init_tokens = init_tokens.repeat_interleave(generation_config.num_return_sequences, dim=0)
1082
+ generation_config.num_return_sequences = 1
1083
+ else:
1084
+ cur_bsz = batch_size
1085
+ batch_idx_map = list(range(cur_bsz))
1086
+ do_condition_on_prev_tokens = [condition_on_prev_tokens for _ in range(cur_bsz)]
1087
+
1088
+ return (
1089
+ batch_idx_map,
1090
+ cur_bsz,
1091
+ input_features,
1092
+ seek,
1093
+ max_frames,
1094
+ init_tokens,
1095
+ do_condition_on_prev_tokens,
1096
+ )
1097
+
1098
+ @staticmethod
1099
+ def _setup_no_speech_detection(logits_processor, segment_input, decoder_input_ids, kwargs):
1100
+ set_inputs = _get_attr_from_logit_processors(logits_processor, WhisperNoSpeechDetection, "set_inputs")
1101
+ extra_kwargs = {k: v for k, v in kwargs.items() if torch.is_tensor(v)}
1102
+ set_inputs({"inputs": segment_input, "decoder_input_ids": decoder_input_ids, **extra_kwargs})
1103
+
1104
+ @staticmethod
1105
+ def _retrieve_total_input_frames(input_features, input_stride, kwargs):
1106
+ if input_features is not None:
1107
+ return input_features.shape[0], input_features.shape[-1]
1108
+
1109
+ if "encoder_outputs" in kwargs:
1110
+ encoder_outputs_shape = (
1111
+ kwargs["encoder_outputs"][0].shape
1112
+ if isinstance(kwargs["encoder_outputs"], BaseModelOutput)
1113
+ else kwargs["encoder_outputs"].shape
1114
+ )
1115
+ return encoder_outputs_shape[0], encoder_outputs_shape[1] * input_stride
1116
+
1117
+ raise ValueError("Make sure to provide either `input_features` or `encoder_outputs` to `generate`.")
1118
+
1119
+ @staticmethod
1120
+ def _maybe_warn_unused_inputs(
1121
+ condition_on_prev_tokens,
1122
+ temperature,
1123
+ compression_ratio_threshold,
1124
+ logprob_threshold,
1125
+ no_speech_threshold,
1126
+ total_input_frames,
1127
+ ):
1128
+ warning_prefix = (
1129
+ f"Audio input consists of only {total_input_frames}. "
1130
+ "Short-form transcription is activated."
1131
+ "{}, but will be ignored."
1132
+ )
1133
+ if condition_on_prev_tokens is not None:
1134
+ logger.warning(warning_prefix.format(f"condition_on_prev_tokens is set to {condition_on_prev_tokens}"))
1135
+
1136
+ if compression_ratio_threshold is not None:
1137
+ logger.warning(
1138
+ warning_prefix.format(f"compression_ratio_threshold is set to {compression_ratio_threshold}")
1139
+ )
1140
+
1141
+ if logprob_threshold is not None:
1142
+ logger.warning(warning_prefix.format(f"logprob_threshold is set to {logprob_threshold}"))
1143
+
1144
+ if no_speech_threshold is not None:
1145
+ logger.warning(warning_prefix.format(f"no_speech_threshold is set to {no_speech_threshold}"))
1146
+
1147
+ # when passing temperature as a list it cannot just be ignored => throw error in this case
1148
+ if isinstance(temperature, (list, tuple)):
1149
+ raise ValueError(
1150
+ f"Audio input consists of only {total_input_frames}. Short-form transcription is activated."
1151
+ f"temperature cannot be set to {temperature} which can only be used for temperature fallback for long-form generation. Make sure to set `temperature` to a float value or `None` for short-form generation."
1152
+ )
1153
+
1154
+ @staticmethod
1155
+ def _set_return_outputs(return_dict_in_generate, return_token_timestamps, logprob_threshold, generation_config):
1156
+ if return_dict_in_generate is None:
1157
+ return_dict_in_generate = generation_config.return_dict_in_generate
1158
+ else:
1159
+ generation_config.return_dict_in_generate = return_dict_in_generate
1160
+
1161
+ generation_config.return_token_timestamps = return_token_timestamps
1162
+ if return_token_timestamps:
1163
+ generation_config.return_dict_in_generate = True
1164
+ generation_config.output_attentions = True
1165
+ generation_config.output_scores = True
1166
+
1167
+ if logprob_threshold is not None:
1168
+ generation_config.return_dict_in_generate = True
1169
+ generation_config.output_scores = True
1170
+
1171
+ return return_dict_in_generate
1172
+
1173
+ def _set_return_timestamps(self, return_timestamps, is_shortform, generation_config):
1174
+ if return_timestamps is None and hasattr(generation_config, "return_timestamps"):
1175
+ return_timestamps = generation_config.return_timestamps
1176
+
1177
+ if not is_shortform:
1178
+ if return_timestamps is False:
1179
+ raise ValueError(
1180
+ "You have passed more than 3000 mel input features (> 30 seconds) which automatically enables long-form generation which "
1181
+ "requires the model to predict timestamp tokens. Please either pass `return_timestamps=True` or make sure to pass no more than 3000 mel input features."
1182
+ )
1183
+
1184
+ logger.info("Setting `return_timestamps=True` for long-form generation.")
1185
+ return_timestamps = True
1186
+
1187
+ if return_timestamps and not hasattr(generation_config, "no_timestamps_token_id"):
1188
+ raise ValueError(
1189
+ "You are trying to return timestamps, but the generation config is not properly set. "
1190
+ "Make sure to initialize the generation config with the correct attributes that are needed such as `no_timestamps_token_id`. "
1191
+ "For more details on how to generate the approtiate config, refer to https://github.com/huggingface/transformers/issues/21878#issuecomment-1451902363"
1192
+ )
1193
+
1194
+ generation_config.return_timestamps = return_timestamps
1195
+
1196
+ if hasattr(generation_config, "no_timestamps_token_id"):
1197
+ timestamp_begin = generation_config.no_timestamps_token_id + 1
1198
+ else:
1199
+ # BC for models missing the `no_timestamps_token_id` in the generation config when generating short-form with no timestamps
1200
+ # We set the timestamp begin token larger than the vocab size, such that the timestamp condition is never met in the decoding loop
1201
+ timestamp_begin = self.config.vocab_size + 1
1202
+
1203
+ return timestamp_begin
1204
+
1205
+ @staticmethod
1206
+ def _set_language_and_task(language, task, is_multilingual, generation_config):
1207
+ if is_multilingual is not None:
1208
+ if not hasattr(generation_config, "is_multilingual"):
1209
+ raise ValueError(
1210
+ "The generation config is outdated and is thus not compatible with the `is_multilingual` argument "
1211
+ "to `generate`. Please update the generation config as per the instructions "
1212
+ "https://github.com/huggingface/transformers/issues/25084#issuecomment-1664398224"
1213
+ )
1214
+ generation_config.is_multilingual = is_multilingual
1215
+
1216
+ if hasattr(generation_config, "is_multilingual") and not generation_config.is_multilingual:
1217
+ if task is not None or language is not None:
1218
+ raise ValueError(
1219
+ "Cannot specify `task` or `language` for an English-only model. If the model is intended to be "
1220
+ "multilingual, pass `is_multilingual=True` to generate, or update the generation config."
1221
+ )
1222
+
1223
+ if language is not None:
1224
+ if not hasattr(generation_config, "lang_to_id"):
1225
+ raise ValueError(
1226
+ "The generation config is outdated and is thus not compatible with the `language` argument "
1227
+ "to `generate`. Either set the language using the `forced_decoder_ids` in the model config, "
1228
+ "or update the generation config as per the instructions https://github.com/huggingface/transformers/issues/25084#issuecomment-1664398224"
1229
+ )
1230
+ generation_config.language = language
1231
+
1232
+ if task is not None:
1233
+ if not hasattr(generation_config, "task_to_id"):
1234
+ raise ValueError(
1235
+ "The generation config is outdated and is thus not compatible with the `task` argument "
1236
+ "to `generate`. Either set the task using the `forced_decoder_ids` in the model config, "
1237
+ "or update the generation config as per the instructions https://github.com/huggingface/transformers/issues/25084#issuecomment-1664398224"
1238
+ )
1239
+ generation_config.task = task
1240
+
1241
+ def _retrieve_init_tokens(self, input_features, batch_size, generation_config, config, num_segment_frames, kwargs):
1242
+ def replace_or_add(lst: List[int], num: int, itr: Iterator[int]):
1243
+ """short function to replace num with a itr in lst"""
1244
+ found = any(i in lst for i in itr)
1245
+ if found:
1246
+ lst = [num if i in itr else i for i in lst]
1247
+ else:
1248
+ lst.append(num)
1249
+ return lst
1250
+
1251
+ def language_to_id(language: str) -> int:
1252
+ language = language.lower()
1253
+ if language in generation_config.lang_to_id.keys():
1254
+ language_token = language
1255
+ elif language in TO_LANGUAGE_CODE.keys():
1256
+ language_token = f"<|{TO_LANGUAGE_CODE[language]}|>"
1257
+ elif language in TO_LANGUAGE_CODE.values():
1258
+ language_token = f"<|{language}|>"
1259
+ else:
1260
+ is_language_code = len(language) == 2
1261
+ raise ValueError(
1262
+ f"Unsupported language: {language}. Language should be one of:"
1263
+ f" {list(TO_LANGUAGE_CODE.values()) if is_language_code else list(TO_LANGUAGE_CODE.keys())}."
1264
+ )
1265
+ if language_token not in generation_config.lang_to_id:
1266
+ raise ValueError(
1267
+ f"{language_token} is not supported by this specific model as it is not in the `generation_config.lang_to_id`."
1268
+ "(You should just add it to the generation config)"
1269
+ )
1270
+
1271
+ return generation_config.lang_to_id[language_token]
1272
+
1273
+ task = getattr(generation_config, "task", None)
1274
+ language = getattr(generation_config, "language", None)
1275
+
1276
+ forced_decoder_ids = generation_config.forced_decoder_ids
1277
+ if forced_decoder_ids is not None:
1278
+ if language is None and task is None and forced_decoder_ids[0][1] is None:
1279
+ logger.warning_once(
1280
+ "Due to a bug fix in https://github.com/huggingface/transformers/pull/28687 transcription using a multilingual Whisper will default to language detection followed by transcription instead of translation to English."
1281
+ "This might be a breaking change for your use case. If you want to instead always translate your audio to English, make sure to pass `language='en'`."
1282
+ )
1283
+ elif hasattr(config, "forced_decoder_ids") and config.forced_decoder_ids is not None:
1284
+ forced_decoder_ids = config.forced_decoder_ids
1285
+
1286
+ if forced_decoder_ids is not None and task is not None:
1287
+ logger.warning_once(
1288
+ f"You have passed task={task}, but also have set `forced_decoder_ids` to {forced_decoder_ids} which creates a conflict. `forced_decoder_ids` will be ignored in favor of task={task}."
1289
+ )
1290
+ forced_decoder_ids = None
1291
+ elif forced_decoder_ids is not None and language is not None:
1292
+ logger.warning_once(
1293
+ f"You have passed language={language}, but also have set `forced_decoder_ids` to {forced_decoder_ids} which creates a conflict. `forced_decoder_ids` will be ignored in favor of language={language}."
1294
+ )
1295
+ forced_decoder_ids = None
1296
+
1297
+ init_tokens = [generation_config.decoder_start_token_id]
1298
+ if forced_decoder_ids is not None and forced_decoder_ids[0][0] == 1:
1299
+ i = 1
1300
+ while len(forced_decoder_ids) > 0 and forced_decoder_ids[0][0] == i:
1301
+ init_tokens += [forced_decoder_ids[0][1]]
1302
+ forced_decoder_ids = forced_decoder_ids[1:]
1303
+ i += 1
1304
+
1305
+ if len(forced_decoder_ids) > 0:
1306
+ raise ValueError(
1307
+ f"You are using token ids in `forced_decoder_ids` that do not seem to correctly follow the prompt pattern of Whisper. Make sure that {forced_decoder_ids} has an entry for all indices >= 1 and < {forced_decoder_ids[0][0]}.",
1308
+ )
1309
+
1310
+ # from v4.39 the forced decoder ids are always None in favour of decoder input ids
1311
+ generation_config.forced_decoder_ids = None
1312
+
1313
+ is_lang_id_undefined = len(init_tokens) <= 1 or (len(init_tokens) > 1 and init_tokens[1] is None)
1314
+
1315
+ # Make sure language is a list of strings of the correct length
1316
+ if isinstance(language, (list, tuple)):
1317
+ if any(l is None for l in language):
1318
+ raise TypeError(
1319
+ "Expected `language` to be `None`, a single string (e.g. `'en'`), or a list of strings with length equal to the batch size (e.g. `('en', 'fr')` for a batch size of 2). Got a list containing `None`."
1320
+ )
1321
+ if len(language) != batch_size:
1322
+ raise ValueError(
1323
+ "When passing a list of languages, the length of the list must match the batch size. "
1324
+ f"Expected length of {batch_size}, but got {len(language)} languages."
1325
+ )
1326
+ languages = language
1327
+ elif language is None:
1328
+ # Language will be detected for each item in batch
1329
+ languages = [None] * batch_size
1330
+ else:
1331
+ languages = [language] # Use a length-1 list now, broadcast later
1332
+
1333
+ # Separate init_tokens for each language
1334
+ init_tokens = [copy.copy(init_tokens) for _ in languages]
1335
+
1336
+ # Update init_tokens with languages
1337
+ lang_ids = None
1338
+ if language is not None:
1339
+ lang_ids = [language_to_id(l) for l in languages]
1340
+ elif hasattr(generation_config, "lang_to_id") and is_lang_id_undefined:
1341
+ # language is not defined or intentially set to `None` to trigger language detection
1342
+ lang_ids = self.detect_language(
1343
+ input_features=input_features,
1344
+ encoder_outputs=kwargs.get("encoder_outputs", None),
1345
+ attention_mask=kwargs.get("attention_mask", None),
1346
+ generation_config=generation_config,
1347
+ num_segment_frames=num_segment_frames,
1348
+ ).tolist()
1349
+ if lang_ids is not None:
1350
+ # append or replace lang_ids to init_tokens
1351
+ for i in range(len(init_tokens)):
1352
+ if len(init_tokens[i]) > 1:
1353
+ init_tokens[i][1] = lang_ids[i]
1354
+ else:
1355
+ init_tokens[i].append(lang_ids[i])
1356
+ del languages
1357
+
1358
+ # Update init_tokens with task
1359
+ for i in range(len(init_tokens)):
1360
+ if task is not None:
1361
+ if task in TASK_IDS:
1362
+ init_tokens[i].append(generation_config.task_to_id[generation_config.task])
1363
+ task_id = generation_config.task_to_id[generation_config.task]
1364
+
1365
+ # if task is defined it'll overwrite task ids that might have already been defined via the generation_config
1366
+ replace_or_add(init_tokens[i], task_id, generation_config.task_to_id.values())
1367
+ else:
1368
+ raise ValueError(f"The `{task}`task is not supported. The task should be one of `{TASK_IDS}`")
1369
+ elif language is not None and hasattr(generation_config, "task_to_id"):
1370
+ # if language is defined, but no task id is in `init_tokens`, default to transcribe
1371
+ if not any(ti in init_tokens[i] for ti in generation_config.task_to_id.values()):
1372
+ init_tokens[i].append(generation_config.task_to_id["transcribe"])
1373
+
1374
+ if (
1375
+ not generation_config.return_timestamps
1376
+ and hasattr(generation_config, "no_timestamps_token_id")
1377
+ and init_tokens[i][-1] != generation_config.no_timestamps_token_id
1378
+ ):
1379
+ init_tokens[i].append(generation_config.no_timestamps_token_id)
1380
+ elif (
1381
+ generation_config.return_timestamps and init_tokens[i][-1] == generation_config.no_timestamps_token_id
1382
+ ):
1383
+ logger.info(
1384
+ "<|notimestamps|> prompt token is removed from generation_config since `return_timestamps` is set to `'True'`."
1385
+ )
1386
+ init_tokens[i] = init_tokens[i][:-1]
1387
+
1388
+ # let's make sure we don't pass `None` tokens as prompt tokens
1389
+ init_tokens[i] = [t for t in init_tokens[i] if t is not None]
1390
+
1391
+ return torch.as_tensor(init_tokens, dtype=torch.long, device=self.device).expand(batch_size, -1)
1392
+
1393
+ def detect_language(
1394
+ self,
1395
+ input_features: Optional[torch.FloatTensor] = None,
1396
+ attention_mask: Optional[torch.LongTensor] = None,
1397
+ encoder_outputs: Optional[Union[torch.FloatTensor, BaseModelOutput]] = None,
1398
+ generation_config: Optional[GenerationConfig] = None,
1399
+ num_segment_frames: int = 3000,
1400
+ ) -> torch.Tensor:
1401
+ """
1402
+ Detects language from log-mel input features or encoder_outputs
1403
+
1404
+ Parameters:
1405
+ input_features (`torch.Tensor` of shape `(batch_size, feature_size, sequence_length)`, *optional*):
1406
+ Float values of log-mel features extracted from the raw speech waveform. The raw speech waveform can be obtained by
1407
+ loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
1408
+ the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
1409
+ [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
1410
+ tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] for details.
1411
+ encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
1412
+ Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
1413
+ `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
1414
+ hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
1415
+ generation_config (`~generation.GenerationConfig`, *optional*):
1416
+ The generation configuration to be used as base parametrization for the generation call. `**kwargs`
1417
+ passed to generate matching the attributes of `generation_config` will override them. If
1418
+ `generation_config` is not provided, the default will be used, which had the following loading
1419
+ priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
1420
+ configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
1421
+ default values, whose documentation should be checked to parameterize generation.
1422
+ num_segment_frames (`int`, *optional*, defaults to 3000):
1423
+ The number of log-mel frames the model expects
1424
+
1425
+ Return:
1426
+ A `torch.LongTensor` representing the detected language ids.
1427
+ """
1428
+ if input_features is None and encoder_outputs is None:
1429
+ raise ValueError("You have to specify either `input_features` or `encoder_outputs`")
1430
+ elif input_features is not None and encoder_outputs is not None:
1431
+ raise ValueError("Make sure to specificy only one of `input_features` or `encoder_outputs` - not both!")
1432
+ elif input_features is not None:
1433
+ inputs = {"input_features": input_features[:, :, :num_segment_frames]}
1434
+ batch_size = input_features.shape[0]
1435
+ elif encoder_outputs is not None:
1436
+ inputs = {"encoder_outputs": encoder_outputs}
1437
+ batch_size = (
1438
+ encoder_outputs[0].shape[0] if isinstance(encoder_outputs, BaseModelOutput) else encoder_outputs[0]
1439
+ )
1440
+ if attention_mask is not None:
1441
+ inputs["attention_mask"] = attention_mask
1442
+
1443
+ generation_config = generation_config or self.generation_config
1444
+ decoder_input_ids = (
1445
+ torch.ones((batch_size, 1), device=self.device, dtype=torch.long)
1446
+ * generation_config.decoder_start_token_id
1447
+ )
1448
+
1449
+ with torch.no_grad():
1450
+ logits = self(**inputs, decoder_input_ids=decoder_input_ids).logits[:, -1]
1451
+
1452
+ non_lang_mask = torch.ones_like(logits[0], dtype=torch.bool)
1453
+ non_lang_mask[list(generation_config.lang_to_id.values())] = False
1454
+
1455
+ logits[:, non_lang_mask] = -np.inf
1456
+
1457
+ lang_ids = logits.argmax(-1)
1458
+
1459
+ return lang_ids
1460
+
1461
+ @staticmethod
1462
+ def _check_decoder_input_ids(kwargs):
1463
+ decoder_input_ids = kwargs.get("decoder_input_ids", None)
1464
+ assistant_model = kwargs.get("assistant_model", None)
1465
+ if decoder_input_ids is not None and assistant_model is not None:
1466
+ raise ValueError(
1467
+ "Passing `decoder_input_ids` is deprecated. Consider passing `prompt_ids` instead.",
1468
+ )
1469
+
1470
+ @staticmethod
1471
+ def _set_num_frames(return_token_timestamps, generation_config, kwargs):
1472
+ if return_token_timestamps:
1473
+ if getattr(generation_config, "task", None) == "translate":
1474
+ logger.warning("Token-level timestamps may not be reliable for task 'translate'.")
1475
+ if not hasattr(generation_config, "alignment_heads"):
1476
+ raise ValueError(
1477
+ "Model generation config has no `alignment_heads`, token-level timestamps not available. "
1478
+ "See https://gist.github.com/hollance/42e32852f24243b748ae6bc1f985b13a on how to add this property to the generation config."
1479
+ )
1480
+ generation_config.num_frames = kwargs.pop("num_frames", None)
1481
+
1482
+ @staticmethod
1483
+ def _set_thresholds_and_condition(
1484
+ generation_config,
1485
+ logprob_threshold,
1486
+ compression_ratio_threshold,
1487
+ no_speech_threshold,
1488
+ condition_on_prev_tokens,
1489
+ ):
1490
+ generation_config.logprob_threshold = (
1491
+ logprob_threshold
1492
+ if logprob_threshold is not None
1493
+ else getattr(generation_config, "logprob_threshold", None)
1494
+ )
1495
+ generation_config.compression_ratio_threshold = (
1496
+ compression_ratio_threshold
1497
+ if compression_ratio_threshold is not None
1498
+ else getattr(generation_config, "compression_ratio_threshold", None)
1499
+ )
1500
+ generation_config.no_speech_threshold = (
1501
+ no_speech_threshold
1502
+ if no_speech_threshold is not None
1503
+ else getattr(generation_config, "no_speech_threshold", None)
1504
+ )
1505
+ generation_config.condition_on_prev_tokens = (
1506
+ condition_on_prev_tokens
1507
+ if condition_on_prev_tokens is not None
1508
+ else getattr(generation_config, "condition_on_prev_tokens", None)
1509
+ )
1510
+
1511
+ @staticmethod
1512
+ def _set_prompt_condition_type(generation_config, prompt_condition_type):
1513
+ allowed_cond_types = ["first-segment", "all-segments"]
1514
+
1515
+ # default to "first-segment"
1516
+ prompt_condition_type = prompt_condition_type or allowed_cond_types[0]
1517
+
1518
+ if prompt_condition_type not in allowed_cond_types:
1519
+ raise ValueError(
1520
+ f"`prompt_condition_type={prompt_condition_type} does not exist. Make sure to set `prompt_condition_type` to one of {', '.join(allowed_cond_types)}"
1521
+ )
1522
+
1523
+ if generation_config.condition_on_prev_tokens is not True and prompt_condition_type == "all-segments":
1524
+ raise ValueError(
1525
+ "Make sure to set `condition_on_prev_tokens=True` when setting `prompt_condition_type='all-segments'`."
1526
+ )
1527
+
1528
+ generation_config.prompt_condition_type = prompt_condition_type
1529
+
1530
+ @staticmethod
1531
+ def _set_condition_on_prev_tokens(condition_on_prev_tokens, generation_config):
1532
+ condition_on_prev_tokens = (
1533
+ condition_on_prev_tokens
1534
+ if condition_on_prev_tokens is not None
1535
+ else getattr(generation_config, "condition_on_prev_tokens", False)
1536
+ )
1537
+ generation_config.condition_on_prev_tokens = condition_on_prev_tokens
1538
+
1539
+ @staticmethod
1540
+ def _retrieve_max_frames_and_seek(batch_size, attention_mask, total_input_frames, is_shortform):
1541
+ if batch_size > 1 and not is_shortform and attention_mask is None:
1542
+ raise ValueError(
1543
+ "When doing batched long-form audio transcription, make sure to pass an `attention_mask`. You can retrieve the `attention_mask` by doing `processor(audio, ..., return_attention_mask=True)` "
1544
+ )
1545
+ elif batch_size > 1 and not is_shortform:
1546
+ max_frames = attention_mask.sum(-1).cpu().to(torch.long)
1547
+ seek = torch.zeros((batch_size,), dtype=torch.long)
1548
+ else:
1549
+ max_frames = torch.ones((batch_size,), dtype=torch.long) * total_input_frames
1550
+ seek = torch.zeros((batch_size,), dtype=torch.long)
1551
+
1552
+ return max_frames, seek
1553
+
1554
+ def _retrieve_logit_processors(self, generation_config, logits_processor, begin_index, num_beams, device):
1555
+ if generation_config.return_timestamps is True:
1556
+ timestamp_processor = WhisperTimeStampLogitsProcessor(generation_config, begin_index=begin_index)
1557
+ logits_processor = (
1558
+ [timestamp_processor] if logits_processor is None else [timestamp_processor] + logits_processor
1559
+ )
1560
+
1561
+ if generation_config.suppress_tokens is not None:
1562
+ suppress_tokens_processor = SuppressTokensLogitsProcessor(generation_config.suppress_tokens, device=device)
1563
+ logits_processor = (
1564
+ [suppress_tokens_processor]
1565
+ if logits_processor is None
1566
+ else [suppress_tokens_processor] + logits_processor
1567
+ )
1568
+ generation_config.suppress_tokens = None
1569
+
1570
+ if generation_config.begin_suppress_tokens is not None:
1571
+ begin_suppress_processor = SuppressTokensAtBeginLogitsProcessor(
1572
+ generation_config.begin_suppress_tokens, begin_index=begin_index, device=device
1573
+ )
1574
+ logits_processor = (
1575
+ [begin_suppress_processor]
1576
+ if logits_processor is None
1577
+ else [begin_suppress_processor] + logits_processor
1578
+ )
1579
+ generation_config.begin_suppress_tokens = None
1580
+
1581
+ if generation_config.no_speech_threshold is not None:
1582
+ no_speech_detector = WhisperNoSpeechDetection(
1583
+ no_speech_token=generation_config.no_timestamps_token_id - 1,
1584
+ begin_index=begin_index,
1585
+ scores_is_logprobs=num_beams > 1,
1586
+ )
1587
+ logits_processor = (
1588
+ [no_speech_detector] if logits_processor is None else [no_speech_detector] + logits_processor
1589
+ )
1590
+ no_speech_detector.set_model(self)
1591
+
1592
+ return logits_processor
1593
+
1594
+ @staticmethod
1595
+ def _maybe_reduce_batch(input_features, seek, max_frames, cur_bsz, batch_idx_map):
1596
+ prev_bsz = cur_bsz
1597
+ new_batch_idx_map = []
1598
+ for i in range(prev_bsz):
1599
+ prev_i = batch_idx_map[i]
1600
+ if seek[prev_i] >= max_frames[prev_i]:
1601
+ cut_index = i + (cur_bsz - prev_bsz)
1602
+ cur_bsz -= 1
1603
+ input_features = torch.cat([input_features[:cut_index], input_features[cut_index + 1 :]], dim=0)
1604
+ else:
1605
+ # cut out index that goes away
1606
+ new_batch_idx_map.append(prev_i)
1607
+
1608
+ return input_features, cur_bsz, new_batch_idx_map
1609
+
1610
+ @staticmethod
1611
+ def _get_input_segment(input_features, seek, seek_num_frames, num_segment_frames, cur_bsz, batch_idx_map):
1612
+ if input_features is None:
1613
+ return None
1614
+
1615
+ segment_input = []
1616
+ for i in range(cur_bsz):
1617
+ prev_i = batch_idx_map[i]
1618
+ segment_input_slice = input_features[i : i + 1, :, seek[prev_i] : seek[prev_i] + seek_num_frames[prev_i]]
1619
+
1620
+ if segment_input_slice.shape[-1] < num_segment_frames:
1621
+ # pad to 3000 if necessary
1622
+ segment_input_slice = F.pad(
1623
+ segment_input_slice, pad=(0, num_segment_frames - segment_input_slice.shape[-1])
1624
+ )
1625
+
1626
+ segment_input.append(segment_input_slice)
1627
+
1628
+ segment_input = torch.cat(segment_input, dim=0)
1629
+
1630
+ return segment_input
1631
+
1632
+ @staticmethod
1633
+ def _prepare_decoder_input_ids(
1634
+ cur_bsz,
1635
+ init_tokens,
1636
+ current_segments,
1637
+ batch_idx_map,
1638
+ do_condition_on_prev_tokens,
1639
+ prompt_ids,
1640
+ generation_config,
1641
+ config,
1642
+ device,
1643
+ suppress_tokens,
1644
+ kwargs,
1645
+ ):
1646
+ if "decoder_input_ids" in kwargs:
1647
+ decoder_input_ids = kwargs.pop("decoder_input_ids")
1648
+
1649
+ return decoder_input_ids, kwargs
1650
+
1651
+ cut_off_length = config.max_target_positions // 2 - 1
1652
+
1653
+ decoder_input_ids = init_tokens[batch_idx_map]
1654
+
1655
+ prev_start_of_text = getattr(generation_config, "prev_sot_token_id", None)
1656
+ if prev_start_of_text is None:
1657
+ prev_start_of_text = suppress_tokens[-2] if suppress_tokens is not None else None
1658
+
1659
+ if any(do_condition_on_prev_tokens) and len(current_segments[0]) > 0:
1660
+ # according to https://github.com/openai/whisper/blob/e58f28804528831904c3b6f2c0e473f346223433/whisper/decoding.py#L609
1661
+ active_segments = [current_segments[i] if do_condition_on_prev_tokens[i] else None for i in batch_idx_map]
1662
+
1663
+ if prompt_ids is not None and generation_config.prompt_condition_type == "all-segments":
1664
+ prev_ids = prompt_ids
1665
+ else:
1666
+ one_tensor = torch.ones((cur_bsz, 1), device=device, dtype=torch.long)
1667
+ prev_ids = prev_start_of_text * one_tensor[0] if prev_start_of_text is not None else None
1668
+
1669
+ padding = "max_length" if generation_config.cache_implementation == "static" else "longest"
1670
+
1671
+ prev_tokens = _pad_to_max_length(
1672
+ active_segments,
1673
+ generation_config.pad_token_id,
1674
+ device=device,
1675
+ padding_side="left",
1676
+ padding=padding,
1677
+ bos_token_tensor=prev_ids,
1678
+ cut_off_length=cut_off_length,
1679
+ )
1680
+ decoder_input_ids = torch.cat([prev_tokens, decoder_input_ids], dim=-1)
1681
+
1682
+ kwargs["decoder_attention_mask"] = decoder_input_ids != generation_config.pad_token_id
1683
+ elif prompt_ids is not None:
1684
+ prev_tokens = prompt_ids[None].repeat(decoder_input_ids.shape[0], 1)
1685
+ decoder_input_ids = torch.cat([prev_tokens, decoder_input_ids], dim=-1)
1686
+ # make sure `"decoder_attention_mask"` is not passed to forward
1687
+ kwargs.pop("decoder_attention_mask", None)
1688
+ else:
1689
+ # make sure `"decoder_attention_mask"` is not passed to forward
1690
+ kwargs.pop("decoder_attention_mask", None)
1691
+
1692
+ return decoder_input_ids, kwargs
1693
+
1694
+ def _set_max_new_tokens_and_length(self, config, decoder_input_ids, generation_config):
1695
+ max_new_tokens = generation_config.max_new_tokens if generation_config.max_new_tokens is not None else 0
1696
+ if max_new_tokens + decoder_input_ids.shape[-1] > self.config.max_target_positions:
1697
+ raise ValueError(
1698
+ f"The length of `decoder_input_ids` equal `prompt_ids` plus special start tokens is {decoder_input_ids.shape[-1]}, and the `max_new_tokens` "
1699
+ f"is {max_new_tokens}. Thus, the combined length of "
1700
+ f"`decoder_input_ids` and `max_new_tokens` is: {max_new_tokens + decoder_input_ids.shape[-1]}. This exceeds the "
1701
+ f"`max_target_positions` of the Whisper model: {self.config.max_target_positions}. "
1702
+ "You should either reduce the length of your prompt, or reduce the value of `max_new_tokens`, "
1703
+ f"so that their combined length is less than {self.config.max_target_positions}."
1704
+ )
1705
+
1706
+ num_initial_tokens = min(config.max_target_positions // 2 - 1, decoder_input_ids.shape[-1] - 1)
1707
+
1708
+ # Make sure we don't get larger than `max_length`
1709
+ if generation_config.max_length is not None and generation_config.max_new_tokens is None:
1710
+ max_length = min(generation_config.max_length + num_initial_tokens, config.max_target_positions)
1711
+ logger.info(
1712
+ f"Increase max_length from {generation_config.max_length} to {max_length} since input is conditioned on previous segment."
1713
+ )
1714
+ elif (
1715
+ generation_config.max_new_tokens is not None
1716
+ and generation_config.max_new_tokens + decoder_input_ids.shape[-1] > config.max_target_positions
1717
+ ):
1718
+ max_new_tokens = config.max_target_positions - decoder_input_ids.shape[-1]
1719
+ generation_config.max_new_tokens = max_new_tokens
1720
+
1721
+ @staticmethod
1722
+ def _retrieve_compression_ratio(tokens, vocab_size):
1723
+ """Compute byte length of zlib compressed token bytes vs. byte length of raw token bytes"""
1724
+ length = int(math.log2(vocab_size) / 8) + 1
1725
+ token_bytes = b"".join([t.to_bytes(length, "little") for t in tokens.tolist()])
1726
+ compression_ratio = len(token_bytes) / len(zlib.compress(token_bytes))
1727
+
1728
+ return compression_ratio
1729
+
1730
+ @staticmethod
1731
+ def _retrieve_avg_logprobs(scores, tokens, eos_token_id, temperature):
1732
+ rescale_temperature = temperature if temperature > 0.0 else 1
1733
+ scores = torch.stack(scores).to(tokens.device)
1734
+
1735
+ if scores.shape[0] > tokens.shape[0]:
1736
+ scores = scores[: tokens.shape[0]]
1737
+ else:
1738
+ tokens = tokens[-scores.shape[0] :]
1739
+
1740
+ logprobs = F.log_softmax((scores * rescale_temperature).float(), dim=-1).to(scores.dtype)
1741
+
1742
+ # retrieve logprob of selected tokens and sum
1743
+ sum_logprobs = sum((logprobs[i][tokens[i]] * (tokens[i] != eos_token_id)) for i in range(logprobs.shape[0]))
1744
+ length = (tokens != eos_token_id).sum(-1) if eos_token_id is not None else tokens.shape[0]
1745
+
1746
+ avg_logprobs = sum_logprobs / (length + 1)
1747
+ return avg_logprobs
1748
+
1749
+ @staticmethod
1750
+ def _retrieve_segment(
1751
+ seek_sequence,
1752
+ seek_outputs,
1753
+ time_offset,
1754
+ timestamp_begin,
1755
+ seek_num_frames,
1756
+ time_precision,
1757
+ input_stride,
1758
+ prev_idx,
1759
+ idx,
1760
+ return_token_timestamps,
1761
+ ):
1762
+ # find the predicted "end of segment" predictions of Whisper
1763
+ # "end of segment" predictions occur whenever Whisper predicts a timestamp token
1764
+ timestamp_tokens: torch.Tensor = seek_sequence.ge(timestamp_begin)
1765
+ single_timestamp_ending = timestamp_tokens[-2:].tolist() == [False, True]
1766
+ timestamp_segment_indices = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0]
1767
+ timestamp_segment_indices.add_(1)
1768
+ token_timestamps = seek_outputs[idx]["token_timestamps"] if return_token_timestamps else []
1769
+
1770
+ # If whisper predicted a "end of segment" via a timestep token, let's go ever each
1771
+ # "end of segment" prediction and slice the decoding into segments accordingly
1772
+ if len(timestamp_segment_indices) > 0:
1773
+ # if the output contains two consecutive timestamp tokens
1774
+ slices = timestamp_segment_indices.tolist()
1775
+ segments = []
1776
+ if single_timestamp_ending:
1777
+ slices.append(len(seek_sequence))
1778
+
1779
+ last_slice = 0
1780
+ # Add each segment to list of all segments
1781
+ for current_slice in slices:
1782
+ sliced_tokens = seek_sequence[last_slice:current_slice]
1783
+ start_timestamp_pos = sliced_tokens[0].item() - timestamp_begin
1784
+ end_timestamp_pos = sliced_tokens[-1].item() - timestamp_begin
1785
+ segments.append(
1786
+ {
1787
+ "start": time_offset[prev_idx] + start_timestamp_pos * time_precision,
1788
+ "end": time_offset[prev_idx] + end_timestamp_pos * time_precision,
1789
+ "tokens": sliced_tokens,
1790
+ "result": seek_outputs[idx],
1791
+ }
1792
+ )
1793
+ if return_token_timestamps:
1794
+ segments[-1]["token_timestamps"] = (
1795
+ token_timestamps[last_slice:current_slice] + time_offset[prev_idx]
1796
+ )
1797
+ last_slice = current_slice
1798
+
1799
+ if single_timestamp_ending:
1800
+ # single timestamp at the end means no speech after the last timestamp.
1801
+ segment_offset = seek_num_frames[prev_idx]
1802
+ else:
1803
+ # otherwise, ignore the unfinished segment and seek to the last timestamp
1804
+ # here we throw away all predictions after the last predicted "end of segment"
1805
+ # since we are cutting right in the middle of an audio
1806
+ last_timestamp_pos = seek_sequence[last_slice - 1].item() - timestamp_begin
1807
+ segment_offset = last_timestamp_pos * input_stride
1808
+ else:
1809
+ # If whisper does not predict any "end of segment" token, then
1810
+ # the whole decoding is considered a segment and we add it to the list of segments
1811
+ timestamps = seek_sequence[timestamp_tokens.nonzero().flatten()]
1812
+ last_timestamp_pos = seek_num_frames[prev_idx]
1813
+ if timestamps.numel() > 0 and timestamps[-1].item() != timestamp_begin:
1814
+ # no consecutive timestamps but it has a timestamp; use the last one.
1815
+ last_timestamp_pos = timestamps[-1].item() - timestamp_begin
1816
+ segments = [
1817
+ {
1818
+ "start": time_offset[prev_idx],
1819
+ "end": time_offset[prev_idx] + last_timestamp_pos * time_precision,
1820
+ "tokens": seek_sequence,
1821
+ "result": seek_outputs[idx],
1822
+ }
1823
+ ]
1824
+ if return_token_timestamps:
1825
+ segments[-1]["token_timestamps"] = token_timestamps + time_offset[prev_idx]
1826
+ segment_offset = seek_num_frames[prev_idx]
1827
+
1828
+ return segments, segment_offset
speech_tokenizer/modeling_whisper.py ADDED
The diff for this file is too large to render. See raw diff
 
speech_tokenizer/utils.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import io
3
+ import glob
4
+ import math
5
+ import tarfile
6
+ import torch
7
+ import torchaudio
8
+ import safetensors
9
+ from .configuration_whisper import WhisperVQConfig
10
+ from .modeling_whisper import WhisperVQEncoder, WhisperVQForConditionalGeneration
11
+ from transformers import WhisperFeatureExtractor, WhisperTokenizerFast
12
+
13
+
14
+ def load_quantize_encoder(model_path):
15
+ config = WhisperVQConfig.from_pretrained(model_path)
16
+ config.quantize_encoder_only = True
17
+ model = WhisperVQEncoder(config)
18
+ state_dict = {}
19
+ for path in glob.glob(os.path.join(model_path, "model*.safetensors")):
20
+ with safetensors.safe_open(path, framework="pt", device="cpu") as f:
21
+ for key in f.keys():
22
+ if key.startswith("model.encoder."):
23
+ new_key = key[len("model.encoder."):]
24
+ if new_key.startswith("layer_norm"):
25
+ continue
26
+ if new_key.startswith("layers"):
27
+ layer_id = int(new_key.split(".")[1])
28
+ if layer_id >= config.quantize_position:
29
+ continue
30
+ state_dict[new_key] = f.get_tensor(key)
31
+ model.load_state_dict(state_dict)
32
+ model.eval()
33
+ model.cuda()
34
+ return model
35
+
36
+
37
+ _resample_buffer: dict[int, torchaudio.transforms.Resample] = {}
38
+
39
+
40
+ def extract_speech_token(model: WhisperVQEncoder, feature_extractor: WhisperFeatureExtractor, utts):
41
+ with torch.no_grad():
42
+ audios, indices = [], []
43
+ for idx, utt in enumerate(utts):
44
+ if isinstance(utt, tuple):
45
+ audio, sample_rate = utt
46
+ else:
47
+ audio, sample_rate = torchaudio.load(utt)
48
+ audio = audio.cuda()
49
+ if sample_rate != 16000:
50
+ if sample_rate not in _resample_buffer:
51
+ _resample_buffer[sample_rate] = torchaudio.transforms.Resample(
52
+ orig_freq=sample_rate,
53
+ new_freq=16000
54
+ ).to('cuda')
55
+ audio = _resample_buffer[sample_rate](audio)
56
+ # if audio.shape[0] > 1:
57
+ # audio = audio[:1]
58
+ audio = audio[0]
59
+ audio = audio.cpu().numpy()
60
+ time_step = 0
61
+ while time_step * 16000 < audio.shape[0]:
62
+ audio_segment = audio[time_step * 16000: (time_step + 30) * 16000]
63
+ audios.append(audio_segment)
64
+ indices.append(idx)
65
+ time_step += 30
66
+ pooling_kernel_size = model.config.pooling_kernel_size or 1
67
+ stride = model.conv1.stride[0] * model.conv2.stride[0] * pooling_kernel_size * feature_extractor.hop_length
68
+ all_speech_tokens = [[] for _ in range(len(utts))]
69
+ batch_size = 128
70
+ for start in range(0, len(audios), batch_size):
71
+ features = feature_extractor(audios[start: start + batch_size], sampling_rate=16000,
72
+ return_attention_mask=True, return_tensors="pt", device='cuda',
73
+ padding="longest", pad_to_multiple_of=stride)
74
+ features = features.to(device="cuda")
75
+ outputs = model(**features)
76
+ speech_tokens = outputs.quantized_token_ids
77
+ attention_mask = features.attention_mask[:, ::model.conv1.stride[0] * model.conv2.stride[0]]
78
+ attention_mask = attention_mask[:, ::model.config.pooling_kernel_size]
79
+ assert attention_mask.shape == speech_tokens.shape
80
+ for i in range(len(speech_tokens)):
81
+ idx = indices[start + i]
82
+ speech_token = speech_tokens[i][attention_mask[i].bool()].tolist()
83
+ all_speech_tokens[idx].extend(speech_token)
84
+ return all_speech_tokens