# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn.functional as F from matcha.models.components.flow_matching import BASECFM class ConditionalCFM(BASECFM): def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None): super().__init__( n_feats=in_channels, cfm_params=cfm_params, n_spks=n_spks, spk_emb_dim=spk_emb_dim, ) self.t_scheduler = cfm_params.t_scheduler self.training_cfg_rate = cfm_params.training_cfg_rate self.inference_cfg_rate = cfm_params.inference_cfg_rate in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0) # Just change the architecture of the estimator here self.estimator = estimator @torch.inference_mode() def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None): """Forward diffusion Args: mu (torch.Tensor): output of encoder shape: (batch_size, n_feats, mel_timesteps) mask (torch.Tensor): output_mask shape: (batch_size, 1, mel_timesteps) n_timesteps (int): number of diffusion steps temperature (float, optional): temperature for scaling noise. Defaults to 1.0. spks (torch.Tensor, optional): speaker ids. Defaults to None. shape: (batch_size, spk_emb_dim) cond: Not used but kept for future purposes Returns: sample: generated mel-spectrogram shape: (batch_size, n_feats, mel_timesteps) """ torch.manual_seed(42) z = torch.randn_like(mu) * temperature t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device) if self.t_scheduler == 'cosine': t_span = 1 - torch.cos(t_span * 0.5 * torch.pi) return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond) def solve_euler(self, x, t_span, mu, mask, spks, cond): """ Fixed euler solver for ODEs. Args: x (torch.Tensor): random noise t_span (torch.Tensor): n_timesteps interpolated shape: (n_timesteps + 1,) mu (torch.Tensor): output of encoder shape: (batch_size, n_feats, mel_timesteps) mask (torch.Tensor): output_mask shape: (batch_size, 1, mel_timesteps) spks (torch.Tensor, optional): speaker ids. Defaults to None. shape: (batch_size, spk_emb_dim) cond: Not used but kept for future purposes """ t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0] # I am storing this because I can later plot it by putting a debugger here and saving it to a file # Or in future might add like a return_all_steps flag sol = [] for step in range(1, len(t_span)): dphi_dt = self.estimator(x, mask, mu, t, spks, cond) # Classifier-Free Guidance inference introduced in VoiceBox if self.inference_cfg_rate > 0: cfg_dphi_dt = self.estimator( x, mask, torch.zeros_like(mu), t, torch.zeros_like(spks) if spks is not None else None, torch.zeros_like(cond) ) dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt) x = x + dt * dphi_dt t = t + dt sol.append(x) if step < len(t_span) - 1: dt = t_span[step + 1] - t return sol[-1] def compute_loss(self, x1, mask, mu, spks=None, cond=None): """Computes diffusion loss Args: x1 (torch.Tensor): Target shape: (batch_size, n_feats, mel_timesteps) mask (torch.Tensor): target mask shape: (batch_size, 1, mel_timesteps) mu (torch.Tensor): output of encoder shape: (batch_size, n_feats, mel_timesteps) spks (torch.Tensor, optional): speaker embedding. Defaults to None. shape: (batch_size, spk_emb_dim) Returns: loss: conditional flow matching loss y: conditional flow shape: (batch_size, n_feats, mel_timesteps) """ b, _, t = mu.shape # random timestep t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype) if self.t_scheduler == 'cosine': t = 1 - torch.cos(t * 0.5 * torch.pi) # sample noise p(x_0) z = torch.randn_like(x1) y = (1 - (1 - self.sigma_min) * t) * z + t * x1 u = x1 - (1 - self.sigma_min) * z # during training, we randomly drop condition to trade off mode coverage and sample fidelity if self.training_cfg_rate > 0: cfg_mask = torch.rand(b, device=x1.device) > self.training_cfg_rate mu = mu * cfg_mask.view(-1, 1, 1) spks = spks * cfg_mask.view(-1, 1) cond = cond * cfg_mask.view(-1, 1, 1) pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond) loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1]) return loss, y