File size: 6,825 Bytes
1ca500a 8c79a96 264d6a0 80d5cb0 2ee9cac 336fe06 2ee9cac 336fe06 2ee9cac 336fe06 2ee9cac 336fe06 2ee9cac 336fe06 2ee9cac 336fe06 2ee9cac 336fe06 2ee9cac 336fe06 80d5cb0 336fe06 80d5cb0 1ca500a 5b2017f 1ca500a 5b2017f 1ca500a 8c79a96 5b2017f 1ca500a 5b2017f 1ca500a 8c79a96 1ca500a 8c79a96 1ca500a 8c79a96 1ca500a 8c79a96 1ca500a 8c79a96 1ca500a 8c79a96 1ca500a 8c79a96 1ca500a 8c79a96 1ca500a 8c79a96 1ca500a 8c79a96 1ca500a 8c79a96 1ca500a 8c79a96 1ca500a 8c79a96 1ca500a 8c79a96 1ca500a 8c79a96 1ca500a 8c79a96 1ca500a 8c79a96 1ca500a 8c79a96 1ca500a 8c79a96 1ca500a 8c79a96 1ca500a 8c79a96 1ca500a 8c79a96 1ca500a 8c79a96 1ca500a 8c79a96 1ca500a 8c79a96 1ca500a 8c79a96 2ee9cac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
---
library_name: transformers
tags:
- turkish
- general tasks
- RAG
- SFT
license: apache-2.0
language:
- tr
- en
pipeline_tag: text2text-generation
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: cymist-2-v02-SFT
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 60.07
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cypienai/cymist-2-v02-SFT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 83.43
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cypienai/cymist-2-v02-SFT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 52.06
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cypienai/cymist-2-v02-SFT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 38.97
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cypienai/cymist-2-v02-SFT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.61
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cypienai/cymist-2-v02-SFT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.07
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cypienai/cymist-2-v02-SFT
name: Open LLM Leaderboard
---
# Model Card for Cymist2-v0.2-SFT
### Model Description
Cymist2-v0.2 is a cutting-edge language model developed by the Cypien AI Team, optimized for text-generation tasks. The model leverages the transformers library and is available under the Apache-2.0 license.
- **Developed by:** Cypien AI Team
- **Model type:** Language Model for Text-Generation
- **Language(s) (NLP):** Turkish, English
- **License:** Apache-2.0
- **Finetuned from model**: mistralai/Mistral-7B-v0.1
### Direct Use
This model is designed for direct use in general applications requiring Turkish language understanding, RAG and text-generation capabilities. It can be integrated into chatbots, virtual assistants, and other AI systems where understanding and generating human-like responses are essential.
### Out-of-Scope Use
The model is not intended for use in critical systems where incorrect answers could lead to harm or in contexts that require domain-specific knowledge beyond the scope of general text-generation.
## Bias, Risks, and Limitations
The model, like all AI models, may inherit biases from its training data. Users should be aware of these potential biases and consider them when integrating the model into applications.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "cypienai/cymist2-v02-SFT"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token_id = tokenizer.eos_token_id
```
## Use Flash-Attention 2 to further speed-up generation
First make sure to install flash-attn. Refer to the original repository of Flash Attention regarding that package installation. Simply change the snippet above with:
```python
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2"
)
```
# Example usage
Here's the prompt template for this model:
```python
question="Yenilenebilir gıdalar nelerdir ?"
prompt= f"[INST] {question} [/INST]"
with torch.inference_mode():
input_ids = tokenizer(prompt, return_tensors="pt").to(device)
output = model.generate(**input_ids, max_new_tokens=8096)
decoded_output = tokenizer.decode(output[0], skip_special_tokens=False)
print(decoded_output)
```
## Training Details
### Training Data
The model was trained on a diverse set of Turkish & English language sources, encompassing a wide range of topics to ensure comprehensive language understanding.
### Training Procedure
#### Preprocessing
The training data underwent standard NLP preprocessing steps, including tokenization, normalization, and possibly data augmentation to enhance the model's robustness.
## Environmental Impact
The training of Cymist2-v0.1-SFT was conducted with a focus on minimizing carbon emissions. Detailed carbon emission statistics will be provided based on the Machine Learning Impact calculator, considering hardware type, usage hours, cloud provider, compute region, and total emissions.
0.93 kg of CO2eq
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
## Technical Specifications
More detailed technical specifications, including model architecture, compute infrastructure, hardware, and software, will be provided to offer insights into the model's operational context.
## Citation
When citing this model in your research, please refer to this model card for information about the model's development and capabilities.
## Glossary
A glossary section can be added to define specific terms and calculations related to the model, ensuring clarity for all potential users.
## More Information [optional]
For more information or inquiries about the model, please contact the Cypien AI Team.
## Model Card Contact
info@cypien.ai
CypienAI team |