dada22231 commited on
Commit
96bed66
·
verified ·
1 Parent(s): 12ea4a0

End of training

Browse files
Files changed (2) hide show
  1. README.md +165 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Korabbit/llama-2-ko-7b
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: 1fd4cf04-d62e-417a-a204-e0d15e61baf1
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ adapter: lora
21
+ base_model: Korabbit/llama-2-ko-7b
22
+ bf16: auto
23
+ chat_template: llama3
24
+ cosine_min_lr_ratio: 0.1
25
+ data_processes: 16
26
+ dataset_prepared_path: null
27
+ datasets:
28
+ - data_files:
29
+ - 63cd21d9745e5eed_train_data.json
30
+ ds_type: json
31
+ field: table_caption
32
+ path: /workspace/input_data/63cd21d9745e5eed_train_data.json
33
+ type: completion
34
+ debug: null
35
+ deepspeed: null
36
+ device_map: auto
37
+ do_eval: true
38
+ eval_batch_size: 1
39
+ eval_sample_packing: false
40
+ eval_steps: 25
41
+ evaluation_strategy: steps
42
+ flash_attention: false
43
+ fp16: null
44
+ fsdp: null
45
+ fsdp_config: null
46
+ gradient_accumulation_steps: 32
47
+ gradient_checkpointing: true
48
+ group_by_length: true
49
+ hub_model_id: dada22231/1fd4cf04-d62e-417a-a204-e0d15e61baf1
50
+ hub_strategy: checkpoint
51
+ hub_token: null
52
+ hub_username: dada22231
53
+ learning_rate: 0.0001
54
+ load_in_4bit: false
55
+ load_in_8bit: false
56
+ local_rank: null
57
+ logging_steps: 1
58
+ lora_alpha: 64
59
+ lora_dropout: 0.05
60
+ lora_fan_in_fan_out: null
61
+ lora_model_dir: null
62
+ lora_r: 32
63
+ lora_target_linear: true
64
+ lora_target_modules:
65
+ - q_proj
66
+ - v_proj
67
+ lr_scheduler: cosine
68
+ max_grad_norm: 1.0
69
+ max_memory:
70
+ 0: 70GiB
71
+ 1: 70GiB
72
+ 2: 70GiB
73
+ 3: 70GiB
74
+ max_steps: 50
75
+ micro_batch_size: 1
76
+ mlflow_experiment_name: /tmp/63cd21d9745e5eed_train_data.json
77
+ model_type: AutoModelForCausalLM
78
+ num_epochs: 3
79
+ optim_args:
80
+ adam_beta1: 0.9
81
+ adam_beta2: 0.95
82
+ adam_epsilon: 1e-5
83
+ optimizer: adamw_torch
84
+ output_dir: miner_id_24
85
+ pad_to_sequence_len: true
86
+ repository_id: dada22231/1fd4cf04-d62e-417a-a204-e0d15e61baf1
87
+ resume_from_checkpoint: null
88
+ s2_attention: null
89
+ sample_packing: false
90
+ save_steps: 25
91
+ save_strategy: steps
92
+ sequence_len: 2048
93
+ strict: false
94
+ tf32: false
95
+ tokenizer_type: AutoTokenizer
96
+ torch_compile: false
97
+ train_on_inputs: false
98
+ trust_remote_code: true
99
+ val_set_size: 50
100
+ wandb_entity: null
101
+ wandb_mode: online
102
+ wandb_name: 1fd4cf04-d62e-417a-a204-e0d15e61baf1
103
+ wandb_project: Public_TuningSN
104
+ wandb_runid: 1fd4cf04-d62e-417a-a204-e0d15e61baf1
105
+ warmup_ratio: 0.04
106
+ weight_decay: 0.01
107
+ xformers_attention: null
108
+
109
+ ```
110
+
111
+ </details><br>
112
+
113
+ # 1fd4cf04-d62e-417a-a204-e0d15e61baf1
114
+
115
+ This model is a fine-tuned version of [Korabbit/llama-2-ko-7b](https://huggingface.co/Korabbit/llama-2-ko-7b) on the None dataset.
116
+ It achieves the following results on the evaluation set:
117
+ - Loss: 2.5628
118
+
119
+ ## Model description
120
+
121
+ More information needed
122
+
123
+ ## Intended uses & limitations
124
+
125
+ More information needed
126
+
127
+ ## Training and evaluation data
128
+
129
+ More information needed
130
+
131
+ ## Training procedure
132
+
133
+ ### Training hyperparameters
134
+
135
+ The following hyperparameters were used during training:
136
+ - learning_rate: 0.0001
137
+ - train_batch_size: 1
138
+ - eval_batch_size: 1
139
+ - seed: 42
140
+ - distributed_type: multi-GPU
141
+ - num_devices: 4
142
+ - gradient_accumulation_steps: 32
143
+ - total_train_batch_size: 128
144
+ - total_eval_batch_size: 4
145
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
146
+ - lr_scheduler_type: cosine
147
+ - lr_scheduler_warmup_steps: 2
148
+ - training_steps: 50
149
+
150
+ ### Training results
151
+
152
+ | Training Loss | Epoch | Step | Validation Loss |
153
+ |:-------------:|:------:|:----:|:---------------:|
154
+ | 3.0444 | 0.0076 | 1 | 4.4190 |
155
+ | 2.6675 | 0.1893 | 25 | 2.6197 |
156
+ | 2.4783 | 0.3786 | 50 | 2.5628 |
157
+
158
+
159
+ ### Framework versions
160
+
161
+ - PEFT 0.13.2
162
+ - Transformers 4.46.0
163
+ - Pytorch 2.5.0+cu124
164
+ - Datasets 3.0.1
165
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c95e4a317fdc49599971a62f6a6ebff3d7c5964df6914f8cd18ae651befddf5
3
+ size 319977674