File size: 4,541 Bytes
a3628f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
---
library_name: peft
base_model: Xenova/tiny-random-Phi3ForCausalLM
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 46486f85-3eb8-4ca0-ad07-f65c17536338
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Xenova/tiny-random-Phi3ForCausalLM
bf16: auto
chat_template: llama3
cosine_min_lr_ratio: 0.1
data_processes: 4
dataset_prepared_path: null
datasets:
- data_files:
- 23492c3b0a0b22f2_train_data.json
ds_type: json
format: custom
num_proc: 4
path: /workspace/input_data/23492c3b0a0b22f2_train_data.json
streaming: true
type:
field_input: src
field_instruction: prompt
field_output: tgt
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map:
lm_head: 3
model.embed_tokens: 0
model.layers.0: 0
model.layers.1: 0
model.layers.10: 3
model.layers.11: 3
model.layers.2: 0
model.layers.3: 1
model.layers.4: 1
model.layers.5: 1
model.layers.6: 2
model.layers.7: 2
model.layers.8: 2
model.layers.9: 3
model.norm: 3
do_eval: true
early_stopping_patience: 1
eval_batch_size: 1
eval_sample_packing: false
eval_steps: 25
evaluation_strategy: steps
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: true
hub_model_id: dada22231/46486f85-3eb8-4ca0-ad07-f65c17536338
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- q_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 0.3
max_memory:
0: 60GB
1: 70GB
2: 70GB
3: 70GB
cpu: 96GB
max_steps: 75
micro_batch_size: 1
mixed_precision: bf16
mlflow_experiment_name: /tmp/23492c3b0a0b22f2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 2048
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_compile: false
torch_dtype: bfloat16
train_on_inputs: false
trust_remote_code: true
use_cache: false
val_set_size: 50
wandb_entity: null
wandb_mode: online
wandb_name: 46486f85-3eb8-4ca0-ad07-f65c17536338
wandb_project: Public_TuningSN
wandb_runid: 46486f85-3eb8-4ca0-ad07-f65c17536338
warmup_ratio: 0.05
weight_decay: 0.01
xformers_attention: null
```
</details><br>
# 46486f85-3eb8-4ca0-ad07-f65c17536338
This model is a fine-tuned version of [Xenova/tiny-random-Phi3ForCausalLM](https://huggingface.co/Xenova/tiny-random-Phi3ForCausalLM) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: nan
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 3
- training_steps: 75
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.0 | 0.0011 | 1 | nan |
| 0.0 | 0.0286 | 25 | nan |
| 0.0 | 0.0572 | 50 | nan |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |