dada22231 commited on
Commit
1030530
1 Parent(s): bf71ad6

End of training

Browse files
Files changed (2) hide show
  1. README.md +185 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: 937baa9d-2d42-415a-8873-b1257eeb1985
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ adapter: lora
21
+ base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4
22
+ bf16: auto
23
+ chat_template: llama3
24
+ cosine_min_lr_ratio: 0.1
25
+ data_processes: 4
26
+ dataset_prepared_path: null
27
+ datasets:
28
+ - data_files:
29
+ - a1a9aab34212846d_train_data.json
30
+ ds_type: json
31
+ field: content
32
+ num_proc: 4
33
+ path: /workspace/input_data/a1a9aab34212846d_train_data.json
34
+ streaming: true
35
+ type: completion
36
+ debug: null
37
+ deepspeed: null
38
+ device_map:
39
+ lm_head: 3
40
+ model.embed_tokens: 0
41
+ model.layers.0: 0
42
+ model.layers.1: 0
43
+ model.layers.10: 3
44
+ model.layers.11: 3
45
+ model.layers.2: 0
46
+ model.layers.3: 1
47
+ model.layers.4: 1
48
+ model.layers.5: 1
49
+ model.layers.6: 2
50
+ model.layers.7: 2
51
+ model.layers.8: 2
52
+ model.layers.9: 3
53
+ model.norm: 3
54
+ do_eval: true
55
+ early_stopping_patience: 1
56
+ eval_batch_size: 1
57
+ eval_sample_packing: false
58
+ eval_steps: 25
59
+ evaluation_strategy: steps
60
+ flash_attention: false
61
+ fp16: null
62
+ fsdp: null
63
+ fsdp_config: null
64
+ gradient_accumulation_steps: 32
65
+ gradient_checkpointing: true
66
+ group_by_length: true
67
+ hub_model_id: dada22231/937baa9d-2d42-415a-8873-b1257eeb1985
68
+ hub_strategy: checkpoint
69
+ hub_token: null
70
+ learning_rate: 0.0001
71
+ load_in_4bit: false
72
+ load_in_8bit: false
73
+ local_rank: null
74
+ logging_steps: 1
75
+ lora_alpha: 64
76
+ lora_dropout: 0.05
77
+ lora_fan_in_fan_out: null
78
+ lora_model_dir: null
79
+ lora_r: 32
80
+ lora_target_linear: true
81
+ lora_target_modules:
82
+ - q_proj
83
+ - v_proj
84
+ lr_scheduler: cosine
85
+ max_grad_norm: 0.3
86
+ max_memory:
87
+ 0: 60GB
88
+ 1: 70GB
89
+ 2: 70GB
90
+ 3: 70GB
91
+ cpu: 96GB
92
+ max_steps: 50
93
+ micro_batch_size: 1
94
+ mixed_precision: bf16
95
+ mlflow_experiment_name: /tmp/a1a9aab34212846d_train_data.json
96
+ model_type: AutoModelForCausalLM
97
+ num_epochs: 3
98
+ optim_args:
99
+ adam_beta1: 0.9
100
+ adam_beta2: 0.95
101
+ adam_epsilon: 1e-5
102
+ optimizer: adamw_torch
103
+ output_dir: miner_id_24
104
+ pad_to_sequence_len: true
105
+ resume_from_checkpoint: null
106
+ s2_attention: null
107
+ sample_packing: false
108
+ save_steps: 25
109
+ save_strategy: steps
110
+ sequence_len: 2048
111
+ strict: false
112
+ tf32: false
113
+ tokenizer_type: AutoTokenizer
114
+ torch_compile: false
115
+ torch_dtype: bfloat16
116
+ train_on_inputs: false
117
+ trust_remote_code: true
118
+ use_cache: false
119
+ val_set_size: 50
120
+ wandb_entity: null
121
+ wandb_mode: online
122
+ wandb_name: 937baa9d-2d42-415a-8873-b1257eeb1985
123
+ wandb_project: Public_TuningSN
124
+ wandb_runid: 937baa9d-2d42-415a-8873-b1257eeb1985
125
+ warmup_ratio: 0.05
126
+ weight_decay: 0.01
127
+ xformers_attention: null
128
+
129
+ ```
130
+
131
+ </details><br>
132
+
133
+ # 937baa9d-2d42-415a-8873-b1257eeb1985
134
+
135
+ This model is a fine-tuned version of [MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4](https://huggingface.co/MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4) on the None dataset.
136
+ It achieves the following results on the evaluation set:
137
+ - Loss: nan
138
+
139
+ ## Model description
140
+
141
+ More information needed
142
+
143
+ ## Intended uses & limitations
144
+
145
+ More information needed
146
+
147
+ ## Training and evaluation data
148
+
149
+ More information needed
150
+
151
+ ## Training procedure
152
+
153
+ ### Training hyperparameters
154
+
155
+ The following hyperparameters were used during training:
156
+ - learning_rate: 0.0001
157
+ - train_batch_size: 1
158
+ - eval_batch_size: 1
159
+ - seed: 42
160
+ - distributed_type: multi-GPU
161
+ - num_devices: 4
162
+ - gradient_accumulation_steps: 32
163
+ - total_train_batch_size: 128
164
+ - total_eval_batch_size: 4
165
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
166
+ - lr_scheduler_type: cosine
167
+ - lr_scheduler_warmup_steps: 2
168
+ - training_steps: 50
169
+
170
+ ### Training results
171
+
172
+ | Training Loss | Epoch | Step | Validation Loss |
173
+ |:-------------:|:------:|:----:|:---------------:|
174
+ | 0.0 | 0.0010 | 1 | nan |
175
+ | 0.0 | 0.0256 | 25 | nan |
176
+ | 0.0 | 0.0511 | 50 | nan |
177
+
178
+
179
+ ### Framework versions
180
+
181
+ - PEFT 0.13.2
182
+ - Transformers 4.46.0
183
+ - Pytorch 2.5.0+cu124
184
+ - Datasets 3.0.1
185
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d535dc8e2340dd5d78873e7861810d0a583a7bcde2614a991a91818f2a8ddf4
3
+ size 860011282