--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-1.7B tags: - axolotl - generated_from_trainer model-index: - name: b579a441-a51c-4ef7-8196-0b2dd3b7a5f0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-1.7B bf16: auto chat_template: llama3 cosine_min_lr_ratio: 0.1 data_processes: 4 dataset_prepared_path: null datasets: - data_files: - 67847b118f37f5b0_train_data.json ds_type: json format: custom num_proc: 4 path: /workspace/input_data/67847b118f37f5b0_train_data.json streaming: true type: field_input: context_original field_instruction: question field_output: answer_original format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: balanced do_eval: true early_stopping_patience: 1 eval_batch_size: 1 eval_sample_packing: false eval_steps: 25 evaluation_strategy: steps flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: true hub_model_id: dada22231/b579a441-a51c-4ef7-8196-0b2dd3b7a5f0 hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: - q_proj - v_proj lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB 1: 75GB 2: 75GB 3: 75GB max_steps: 50 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/67847b118f37f5b0_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 2048 strict: false tf32: false tokenizer_type: AutoTokenizer torch_compile: false train_on_inputs: false trust_remote_code: true val_set_size: 50 wandb_entity: null wandb_mode: online wandb_name: b579a441-a51c-4ef7-8196-0b2dd3b7a5f0 wandb_project: Public_TuningSN wandb_runid: b579a441-a51c-4ef7-8196-0b2dd3b7a5f0 warmup_ratio: 0.04 weight_decay: 0.01 xformers_attention: null ``` </details><br> # b579a441-a51c-4ef7-8196-0b2dd3b7a5f0 This model is a fine-tuned version of [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0136 | 1 | nan | | 0.0 | 0.3398 | 25 | nan | | 0.0 | 0.6797 | 50 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1