daekeun-ml
commited on
Commit
•
a7110bd
1
Parent(s):
a7c5163
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ko
|
4 |
+
tags:
|
5 |
+
- trocr
|
6 |
+
- image-to-text
|
7 |
+
license: mit
|
8 |
+
metrics:
|
9 |
+
- wer
|
10 |
+
- cer
|
11 |
+
---
|
12 |
+
|
13 |
+
# TrOCR for Korean Language (PoC)
|
14 |
+
|
15 |
+
## Overview
|
16 |
+
|
17 |
+
TrOCR has not yet released a multilingual model including Korean, so we trained a Korean model for PoC purpose. Based on this model, it is recommended to collect more data to additionally train the 1st stage or perform fine-tuning as the 2nd stage.
|
18 |
+
|
19 |
+
## Collecting data
|
20 |
+
|
21 |
+
### Text data
|
22 |
+
We created training data by processing three types of datasets.
|
23 |
+
- News summariation dataset: https://huggingface.co/datasets/daekeun-ml/naver-news-summarization-ko
|
24 |
+
- Naver Movie Sentiment Classification: https://github.com/e9t/nsmc
|
25 |
+
- Chatbot dataset: https://github.com/songys/Chatbot_data
|
26 |
+
For efficient data collection, each sentence was separated by a sentence separator library (Kiwi Python wrapper; https://github.com/bab2min/kiwipiepy), and as a result, 637,401 samples were collected.
|
27 |
+
|
28 |
+
### Image Data
|
29 |
+
|
30 |
+
Image data was generated with TextRecognitionDataGenerator (https://github.com/Belval/TextRecognitionDataGenerator) introduced in the TrOCR paper.
|
31 |
+
Below is a code snippet for generating images.
|
32 |
+
```shell
|
33 |
+
python3 ./trdg/run.py -i ocr_dataset_poc.txt -w 5 -t {num_cores} -f 64 -l ko -c {num_samples} -na 2 --output_dir {dataset_dir}
|
34 |
+
```
|
35 |
+
|
36 |
+
## Training
|
37 |
+
We used heuristic parameters without separate hyperparameter tuning.
|
38 |
+
- learning_rate = 4e-5
|
39 |
+
- epochs = 25
|
40 |
+
- fp16 = True
|
41 |
+
|
42 |
+
## Usage
|
43 |
+
|
44 |
+
### inference.py
|
45 |
+
|
46 |
+
```python
|
47 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel, AutoTokenizer
|
48 |
+
import requests
|
49 |
+
from io import BytesIO
|
50 |
+
from PIL import Image
|
51 |
+
|
52 |
+
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
53 |
+
model = VisionEncoderDecoderModel.from_pretrained("daekeun-ml/ko-trocr-base-nsmc-news-chatbot")
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained("daekeun-ml/ko-trocr-base-nsmc-news-chatbot")
|
55 |
+
|
56 |
+
url = "https://raw.githubusercontent.com/aws-samples/aws-ai-ml-workshop-kr/master/sagemaker/sm-kornlp/trocr/sample_imgs/news_1.jpg"
|
57 |
+
response = requests.get(url)
|
58 |
+
img = Image.open(BytesIO(response.content))
|
59 |
+
|
60 |
+
pixel_values = processor(img, return_tensors="pt").pixel_values
|
61 |
+
generated_ids = model.generate(pixel_values, max_length=64)
|
62 |
+
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
63 |
+
print(generated_text)
|
64 |
+
```
|
65 |
+
|
66 |
+
All the code required for data collection and model training has been published on the author's Github.
|
67 |
+
- https://github.com/daekeun-ml/sm-kornlp-usecases/tree/main/trocr
|