File size: 7,732 Bytes
49f8652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# coding=utf-8

# Original Scripts are
# https://gist.github.com/SunMarc/dcdb499ac16d355a8f265aa497645996
# and
# https://gist.github.com/younesbelkada/9f7f75c94bdc1981c8ca5cc937d4a4da
# changed by webbigdata for use_safetensors.


# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from dataclasses import dataclass, field
from typing import Optional

import torch
from datasets import load_dataset
from peft import LoraConfig
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    HfArgumentParser,
    AutoTokenizer,
    TrainingArguments,
)
from peft import prepare_model_for_kbit_training, get_peft_model
from transformers import GPTQConfig

from trl import SFTTrainer

# This example fine-tunes Llama 2 model on Guanaco dataset
# using GPTQ and peft.
# Use it by correctly passing --model_name argument when running the
# script. The default model is ybelkada/llama-7b-GPTQ-test

# Versions used:
# accelerate == 0.21.0
# auto-gptq == 0.4.2
# trl == 0.4.7
# peft from source
# transformers from source
# optimum from source

# For models that have `config.pretraining_tp > 1` install:
# pip install git+https://github.com/huggingface/transformers.git

@dataclass
class ScriptArguments:
    """
    These arguments vary depending on how many GPUs you have, what their capacity and features are, and what size model you want to train.
    """

    local_rank: Optional[int] = field(default=-1, metadata={"help": "Used for multi-gpu"})

    per_device_train_batch_size: Optional[int] = field(default=4)
    per_device_eval_batch_size: Optional[int] = field(default=1)
    gradient_accumulation_steps: Optional[int] = field(default=4)
    learning_rate: Optional[float] = field(default=2e-4)
    max_grad_norm: Optional[float] = field(default=0.3)
    weight_decay: Optional[int] = field(default=0.001)
    lora_alpha: Optional[int] = field(default=16)
    lora_dropout: Optional[float] = field(default=0.1)
    lora_r: Optional[int] = field(default=64)
    max_seq_length: Optional[int] = field(default=512)
    model_name: Optional[str] = field(
        default="dahara1/weblab-10b-instruction-sft-GPTQ/finetune_sample",
        metadata={
            "help": "The model that you want to train from the Hugging Face hub. E.g. gpt2, gpt2-xl, bert, etc."
        }
    )
    dataset_name: Optional[str] = field(
        default="timdettmers/openassistant-guanaco",
        metadata={"help": "The preference dataset to use."},
    )
    num_train_epochs: Optional[int] = field(
        default=1,
        metadata={"help": "The number of training epochs for the reward model."},
    )
    fp16: Optional[bool] = field(
        default=False,
        metadata={"help": "Enables fp16 training."},
    )
    bf16: Optional[bool] = field(
        default=False,
        metadata={"help": "Enables bf16 training."},
    )
    packing: Optional[bool] = field(
        default=False,
        metadata={"help": "Use packing dataset creating."},
    )
    gradient_checkpointing: Optional[bool] = field(
        default=True,
        metadata={"help": "Enables gradient checkpointing."},
    )
    optim: Optional[str] = field(
        default="adamw_hf",
        metadata={"help": "The optimizer to use."},
    )
    lr_scheduler_type: str = field(
        default="constant",
        metadata={"help": "Learning rate schedule. Constant a bit better than cosine, and has advantage for analysis"},
    )
    max_steps: int = field(default=10000, metadata={"help": "How many optimizer update steps to take"})
    warmup_ratio: float = field(default=0.03, metadata={"help": "Fraction of steps to do a warmup for"})
    group_by_length: bool = field(
        default=True,
        metadata={
            "help": "Group sequences into batches with same length. Saves memory and speeds up training considerably."
        },
    )
    save_steps: int = field(default=10, metadata={"help": "Save checkpoint every X updates steps."})
    logging_steps: int = field(default=10, metadata={"help": "Log every X updates steps."})
    merge_and_push: Optional[bool] = field(
        default=False,
        metadata={"help": "Merge and push weights after training"},
    )
    output_dir: str = field(
        default="./results",
        metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
    )


parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]


def create_and_prepare_model(args):
    major, _ = torch.cuda.get_device_capability()
    if major >= 8:
        print("=" * 80)
        print("Your GPU supports bfloat16, you can accelerate training with the argument --bf16")
        print("=" * 80)

    # Load the entire model on the GPU 0
    #device_map = {"":0}
    # switch to `device_map = "auto"` for multi-GPU
    device_map = "auto"
    

    # need to disable exllama kernel
    # exllama kernel are not very stable for training
    model = AutoModelForCausalLM.from_pretrained(
        args.model_name,
        device_map=device_map,
        use_safetensors=True,
        quantization_config= GPTQConfig(bits=4, disable_exllama=True)
    )
    
    # check: https://github.com/huggingface/transformers/pull/24906
    model.config.pretraining_tp = 1 

    peft_config = LoraConfig(
        lora_alpha=script_args.lora_alpha,
        lora_dropout=script_args.lora_dropout,
        r=script_args.lora_r,
        bias="none",
        task_type="CAUSAL_LM", 
    )

    tokenizer = AutoTokenizer.from_pretrained(script_args.model_name, trust_remote_code=True)
    tokenizer.pad_token = tokenizer.eos_token

    return model, peft_config, tokenizer


training_arguments = TrainingArguments(
    output_dir=script_args.output_dir,
    per_device_train_batch_size=script_args.per_device_train_batch_size,
    gradient_accumulation_steps=script_args.gradient_accumulation_steps,
    optim=script_args.optim,
    save_steps=script_args.save_steps,
    logging_steps=script_args.logging_steps,
    learning_rate=script_args.learning_rate,
    fp16=script_args.fp16,
    bf16=script_args.bf16,
    max_grad_norm=script_args.max_grad_norm,
    max_steps=script_args.max_steps,
    warmup_ratio=script_args.warmup_ratio,
    group_by_length=script_args.group_by_length,
    lr_scheduler_type=script_args.lr_scheduler_type,
)

model, peft_config, tokenizer = create_and_prepare_model(script_args)
model = prepare_model_for_kbit_training(model)
model = get_peft_model(model, peft_config)
model.config.use_cache = False
dataset = load_dataset("csv", data_files="jawiki3.csv", split='train')


# Fix weird overflow issue with fp16 training
tokenizer.padding_side = "right"
trainer = SFTTrainer(
    model=model,
    train_dataset=dataset,
    dataset_text_field="QuestionAnswer",
    max_seq_length=script_args.max_seq_length,
    tokenizer=tokenizer,
    args=training_arguments,
    packing=script_args.packing,
)

trainer.train()

if script_args.merge_and_push:
    output_dir = os.path.join(script_args.output_dir, "final_checkpoints")
    trainer.model.save_pretrained(output_dir)

    # Free memory for merging weights
    del model
    torch.cuda.empty_cache()