dahara1 commited on
Commit
29880fd
·
1 Parent(s): 29bdfa3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -6
README.md CHANGED
@@ -1,17 +1,18 @@
1
  ---
2
  inference: false
3
  ---
 
 
4
  original model [weblab-10b-instruction-sft](https://huggingface.co/matsuo-lab/weblab-10b-instruction-sft)
5
 
6
  This is 4bit GPTQ Version.
7
 
8
  The size is smaller and the execution speed is faster, but the inference performance may be a little worse.
9
 
10
- Benchmark results are in progress.
11
- I will upload it at a later date.
12
-
13
 
14
  ### sample code
 
 
15
  ```
16
  pip install auto-gptq
17
  ```
@@ -32,12 +33,30 @@ model = AutoGPTQForCausalLM.from_quantized(
32
  device="cuda:0")
33
 
34
  prompt = "スタジオジブリの作品を5つ教えてください"
35
- prompt_template = f"### Instruction: {prompt}\n### Response:"
36
 
37
  tokens = tokenizer(prompt_template, return_tensors="pt").to("cuda:0").input_ids
38
  output = model.generate(input_ids=tokens, max_new_tokens=100, do_sample=True, temperature=0.8)
39
  print(tokenizer.decode(output[0]))
40
  ```
41
 
42
- ### See Also
43
- https://github.com/PanQiWei/AutoGPTQ/blob/main/docs/tutorial/01-Quick-Start.md
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  inference: false
3
  ---
4
+ # weblab-10b-instruction-sft-GPTQ
5
+
6
  original model [weblab-10b-instruction-sft](https://huggingface.co/matsuo-lab/weblab-10b-instruction-sft)
7
 
8
  This is 4bit GPTQ Version.
9
 
10
  The size is smaller and the execution speed is faster, but the inference performance may be a little worse.
11
 
 
 
 
12
 
13
  ### sample code
14
+ At least one GPU is currently required due to a limitation of the Accelerate library.
15
+
16
  ```
17
  pip install auto-gptq
18
  ```
 
33
  device="cuda:0")
34
 
35
  prompt = "スタジオジブリの作品を5つ教えてください"
36
+ prompt_template = f"### 指示: {prompt}\n\n### 応答:"
37
 
38
  tokens = tokenizer(prompt_template, return_tensors="pt").to("cuda:0").input_ids
39
  output = model.generate(input_ids=tokens, max_new_tokens=100, do_sample=True, temperature=0.8)
40
  print(tokenizer.decode(output[0]))
41
  ```
42
 
43
+ ### See Also
44
+ https://github.com/PanQiWei/AutoGPTQ/blob/main/docs/tutorial/01-Quick-Start.md
45
+
46
+
47
+ ### Benchmark
48
+
49
+ The results below are preliminary. The blank part is under measurement.
50
+
51
+ * **Japanese benchmark**
52
+
53
+ - *We used [Stability-AI/lm-evaluation-harness](https://github.com/Stability-AI/lm-evaluation-harness/tree/jp-stable) + gptq patch for evaluation.*
54
+ - *The 4-task average accuracy is based on results of JCommonsenseQA-1.1, JNLI-1.1, MARC-ja-1.1, and JSQuAD-1.1.*
55
+ - *model loading is performed with gptq_use_triton=True, and evaluation is performed with template version 0.3 using the few-shot in-context learning.*
56
+ - *The number of few-shots is 3,3,3,2.*
57
+
58
+ | Model | Average | JCommonsenseQA | JNLI | MARC-ja | JSQuAD |
59
+ | :-- | :-- | :-- | :-- | :-- | :-- |
60
+ | weblab-10b-instruction-sft | 78.78 | 74.35 | 65.65 | 96.06 | 79.04 |
61
+ | weblab-10b | 66.38 | 65.86 | 54.19 | 84.49 | 60.98 |
62
+ | *weblab-10b-instruction-sft-GPTQ* | - | 74.53 | 41.70 | - | 72.69 |