dahara1 commited on
Commit
4065b4d
1 Parent(s): a0d00c4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -5
README.md CHANGED
@@ -5,9 +5,9 @@ language:
5
  ---
6
  # weblab-10b-instruction-sft-GPTQ
7
 
8
- original model [weblab-10b-instruction-sft](https://huggingface.co/matsuo-lab/weblab-10b-instruction-sft) which is a Japanese-centric multilingual GPT-NeoX model of 10 billion parameters.
9
 
10
- This model is A quantized(miniaturized) version of the original model(21.42GB).
11
 
12
  There are currently two well-known quantization version of original model.
13
  (1)GPTQ version(This model. 6.3 GB)
@@ -23,7 +23,12 @@ But maybe gguf model little bit slower then GPTQ especialy long text.
23
 
24
 
25
  ### sample code
26
-
 
 
 
 
 
27
  ```
28
  pip install auto-gptq
29
  ```
@@ -52,13 +57,13 @@ output = model.generate(input_ids=tokens, max_new_tokens=100, do_sample=True, te
52
  print(tokenizer.decode(output[0]))
53
  ```
54
 
55
- ### Other documents
56
  https://github.com/PanQiWei/AutoGPTQ/blob/main/docs/tutorial/01-Quick-Start.md
57
 
58
  ### Benchmark
59
 
60
  The results below are preliminary. The blank part is under measurement.
61
- Also, the score may change as a result of tuning after this.
62
 
63
  * **Japanese benchmark**
64
 
 
5
  ---
6
  # weblab-10b-instruction-sft-GPTQ
7
 
8
+ Original model [weblab-10b-instruction-sft](https://huggingface.co/matsuo-lab/weblab-10b-instruction-sft) which is a Japanese-centric multilingual GPT-NeoX model of 10 billion parameters.
9
 
10
+ This model is a quantized(miniaturized) version of the original model(21.42GB).
11
 
12
  There are currently two well-known quantization version of original model.
13
  (1)GPTQ version(This model. 6.3 GB)
 
23
 
24
 
25
  ### sample code
26
+
27
+ Currently, models may behave differently on local PC and Colab. On Colab, the model may not respond if you include instructional prompts.
28
+ [Colab Sample script](https://github.com/webbigdata-jp/python_sample/blob/main/weblab_10b_instruction_sft_GPTQ_sample.ipynb)
29
+
30
+ If you get an error (something not found or something is not defined) in the script below, please refer to the official documentation and Colab samples and specify a specific version.
31
+
32
  ```
33
  pip install auto-gptq
34
  ```
 
57
  print(tokenizer.decode(output[0]))
58
  ```
59
 
60
+ ### Other AutoGPTQ documents
61
  https://github.com/PanQiWei/AutoGPTQ/blob/main/docs/tutorial/01-Quick-Start.md
62
 
63
  ### Benchmark
64
 
65
  The results below are preliminary. The blank part is under measurement.
66
+ Also, the score may change as a result of more tuning.
67
 
68
  * **Japanese benchmark**
69