Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## VQGAN-f16-16384
|
2 |
+
|
3 |
+
### Model Description
|
4 |
+
|
5 |
+
This is a Flax/JAX implementation of VQGAN, which learns a codebook of context-rich visual parts by leveraging both the use of convolutional methods and transformers. It was introduced in [Taming Transformers for High-Resolution Image Synthesis](https://compvis.github.io/taming-transformers/) ([CVPR paper](https://openaccess.thecvf.com/content/CVPR2021/html/Esser_Taming_Transformers_for_High-Resolution_Image_Synthesis_CVPR_2021_paper.html)).
|
6 |
+
|
7 |
+
The model allows the encoding of images as a fixed-length sequence of tokens taken from the codebook.
|
8 |
+
|
9 |
+
This version of the model uses a reduction factor `f=16` and a vocabulary of `16,384` tokens.
|
10 |
+
|
11 |
+
As an example of how the reduction factor works, images of size `256x256` are encoded to sequences of `256` tokens: `256/16 * 256/16`. Images of `512x512` would result in sequences of `1024` tokens.
|
12 |
+
|
13 |
+
This model was ported to JAX using [a checkpoint trained on ImageNet](https://heibox.uni-heidelberg.de/d/a7530b09fed84f80a887/).
|
14 |
+
|
15 |
+
### How to Use
|
16 |
+
|
17 |
+
The checkpoint can be loaded using [Suraj Patil's implementation](https://github.com/patil-suraj/vqgan-jax) of `VQModel`.
|
18 |
+
|
19 |
+
* Example notebook, heavily based in work by [Suraj](https://huggingface.co/valhalla): [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/borisdayma/dalle-mini/blob/main/dev/vqgan/JAX_VQGAN_f16_16384_Reconstruction.ipynb)
|
20 |
+
|
21 |
+
* Batch encoding using JAX `pmap`, complete example including data loading with PyTorch:
|
22 |
+
|
23 |
+
```python
|
24 |
+
# VQGAN-JAX - pmap encoding HowTo
|
25 |
+
|
26 |
+
import numpy as np
|
27 |
+
|
28 |
+
# For data loading
|
29 |
+
import torch
|
30 |
+
import torchvision.transforms.functional as TF
|
31 |
+
from torch.utils.data import Dataset, DataLoader
|
32 |
+
from torchvision.datasets.folder import default_loader
|
33 |
+
from torchvision.transforms import InterpolationMode
|
34 |
+
|
35 |
+
# For data saving
|
36 |
+
from pathlib import Path
|
37 |
+
import pandas as pd
|
38 |
+
from tqdm import tqdm
|
39 |
+
|
40 |
+
import jax
|
41 |
+
from jax import pmap
|
42 |
+
|
43 |
+
from vqgan_jax.modeling_flax_vqgan import VQModel
|
44 |
+
|
45 |
+
## Params and arguments
|
46 |
+
|
47 |
+
# List of paths containing images to encode
|
48 |
+
image_list = '/sddata/dalle-mini/CC12M/10k.tsv'
|
49 |
+
output_tsv = 'output.tsv' # Encoded results
|
50 |
+
batch_size = 64
|
51 |
+
num_workers = 4 # TPU v3-8s have 96 cores, so feel free to increase this number when necessary
|
52 |
+
|
53 |
+
# Load model
|
54 |
+
model = VQModel.from_pretrained("flax-community/vqgan_f16_16384")
|
55 |
+
|
56 |
+
## Data Loading.
|
57 |
+
|
58 |
+
# Simple torch Dataset to load images from paths.
|
59 |
+
# You can use your own pipeline instead.
|
60 |
+
class ImageDataset(Dataset):
|
61 |
+
def __init__(self, image_list_path: str, image_size: int, max_items=None):
|
62 |
+
"""
|
63 |
+
:param image_list_path: Path to a file containing a list of all images. We assume absolute paths for now.
|
64 |
+
:param image_size: Image size. Source images will be resized and center-cropped.
|
65 |
+
:max_items: Limit dataset size for debugging
|
66 |
+
"""
|
67 |
+
self.image_list = pd.read_csv(image_list_path, sep='\t', header=None)
|
68 |
+
if max_items is not None: self.image_list = self.image_list[:max_items]
|
69 |
+
self.image_size = image_size
|
70 |
+
|
71 |
+
def __len__(self):
|
72 |
+
return len(self.image_list)
|
73 |
+
|
74 |
+
def _get_raw_image(self, i):
|
75 |
+
image_path = Path(self.image_list.iloc[i][0])
|
76 |
+
return default_loader(image_path)
|
77 |
+
|
78 |
+
def resize_image(self, image):
|
79 |
+
s = min(image.size)
|
80 |
+
r = self.image_size / s
|
81 |
+
s = (round(r * image.size[1]), round(r * image.size[0]))
|
82 |
+
image = TF.resize(image, s, interpolation=InterpolationMode.LANCZOS)
|
83 |
+
image = TF.center_crop(image, output_size = 2 * [self.image_size])
|
84 |
+
image = np.expand_dims(np.array(image), axis=0)
|
85 |
+
return image
|
86 |
+
|
87 |
+
def __getitem__(self, i):
|
88 |
+
image = self._get_raw_image(i)
|
89 |
+
return self.resize_image(image)
|
90 |
+
|
91 |
+
## Encoding
|
92 |
+
|
93 |
+
# Encoding function to be parallelized with `pmap`
|
94 |
+
# Note: images have to be square
|
95 |
+
def encode(model, batch):
|
96 |
+
_, indices = model.encode(batch)
|
97 |
+
return indices
|
98 |
+
|
99 |
+
# Alternative: create a batch with num_tpus*batch_size and use `shard` to distribute.
|
100 |
+
def superbatch_generator(dataloader, num_tpus):
|
101 |
+
iter_loader = iter(dataloader)
|
102 |
+
for batch in iter_loader:
|
103 |
+
superbatch = [batch.squeeze(1)]
|
104 |
+
try:
|
105 |
+
for _ in range(num_tpus-1):
|
106 |
+
batch = next(iter_loader)
|
107 |
+
if batch is None:
|
108 |
+
break
|
109 |
+
# Skip incomplete last batch
|
110 |
+
if batch.shape[0] == dataloader.batch_size:
|
111 |
+
superbatch.append(batch.squeeze(1))
|
112 |
+
except StopIteration:
|
113 |
+
pass
|
114 |
+
superbatch = torch.stack(superbatch, axis=0)
|
115 |
+
yield superbatch
|
116 |
+
|
117 |
+
def encode_dataset(dataset, batch_size=32):
|
118 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers)
|
119 |
+
superbatches = superbatch_generator(dataloader, num_tpus=jax.device_count())
|
120 |
+
|
121 |
+
num_tpus = jax.device_count()
|
122 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers)
|
123 |
+
superbatches = superbatch_generator(dataloader, num_tpus=num_tpus)
|
124 |
+
|
125 |
+
p_encoder = pmap(lambda batch: encode(model, batch))
|
126 |
+
|
127 |
+
# Save each superbatch to avoid reallocation of buffers as we process them.
|
128 |
+
# Keep the file open to prevent excessive file seeks.
|
129 |
+
with open(output_tsv, "w") as file:
|
130 |
+
iterations = len(dataset) // (batch_size * num_tpus)
|
131 |
+
for n in tqdm(range(iterations)):
|
132 |
+
superbatch = next(superbatches)
|
133 |
+
encoded = p_encoder(superbatch.numpy())
|
134 |
+
encoded = encoded.reshape(-1, encoded.shape[-1])
|
135 |
+
|
136 |
+
# Extract paths from the dataset, save paths and encodings (as string)
|
137 |
+
start_index = n * batch_size * num_tpus
|
138 |
+
end_index = (n+1) * batch_size * num_tpus
|
139 |
+
paths = dataset.image_list[start_index:end_index][0].values
|
140 |
+
encoded_as_string = list(map(lambda item: np.array2string(item, separator=',', max_line_width=50000, formatter={'int':lambda x: str(x)}), encoded))
|
141 |
+
batch_df = pd.DataFrame.from_dict({"image_file": paths, "encoding": encoded_as_string})
|
142 |
+
batch_df.to_csv(file, sep='\t', header=(n==0), index=None)
|
143 |
+
|
144 |
+
dataset = ImageDataset(image_list, image_size=256)
|
145 |
+
encoded_dataset = encode_dataset(dataset, batch_size=batch_size)
|
146 |
+
```
|
147 |
+
|
148 |
+
### Related Models in the Hub
|
149 |
+
|
150 |
+
* [DALL路E mini](https://huggingface.co/flax-community/dalle-mini), a Flax/JAX simplified implementation of OpenAI's DALL路E.
|
151 |
+
|
152 |
+
### Other
|
153 |
+
|
154 |
+
This model can be used as part of the implementation of [DALL路E mini](https://github.com/borisdayma/dalle-mini). Our [report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA) contains more details on how to leverage it in an image encoding / generation pipeline.
|