damerajee's picture
Update README.md
409d6d9
metadata
license: llama2
base_model: codellama/CodeLlama-7b-hf
tags:
  - generated_from_trainer
model-index:
  - name: codellama2-finetuned-codex-py
    results: []
datasets:
  - iamtarun/python_code_instructions_18k_alpaca
language:
  - en
pipeline_tag: text-generation

codellama2-finetuned-codex-py

This model is a fine-tuned version of codellama/CodeLlama-7b-hf on the iamtarun/python_code_instructions_18k_alpaca dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Example Use Cases:

from transformers import AutoTokenizer
from transformers import pipeline
import torch

tokenizer = AutoTokenizer.from_pretrained("damerajee/codellama2-finetuned-alpaca-18k-fin")
pipe = pipeline(
    "text-generation",
    model="damerajee/codellama2-finetuned-alpaca-18k-fin",
    torch_dtype=torch.float16,
    device_map="auto",
)

text = "write a function that takes in print out each individual characters in a string"

sequences = pipe(
    text,
    do_sample=True,
    temperature=0.1,
    top_p=0.7,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
    max_length=70,
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")

Training and evaluation data

Step Training Loss
10 0.792200
20 0.416100
30 0.348600
40 0.323200
50 0.316300
60 0.317500
70 0.333600
80 0.329500
90 0.333400
100 0.309900

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • training_steps: 100
  • mixed_precision_training: Native AMP

Training results

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.15.0