File size: 1,796 Bytes
458aaba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- KDH
- 3_class
- ViT
- generated_from_trainer
model-index:
- name: ViT_face
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ViT_face

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the face dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2726

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 1.0   | 38   | 0.8665          |
| No log        | 2.0   | 76   | 0.6146          |
| No log        | 3.0   | 114  | 0.4444          |
| No log        | 4.0   | 152  | 0.3421          |
| No log        | 5.0   | 190  | 0.3062          |
| No log        | 6.0   | 228  | 0.3003          |
| No log        | 7.0   | 266  | 0.2770          |
| No log        | 8.0   | 304  | 0.2762          |
| No log        | 9.0   | 342  | 0.2700          |
| No log        | 10.0  | 380  | 0.2726          |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1