--- language: - en - vi - zh base_model: - google/gemma-2-2b-it pipeline_tag: text-generation tags: - vllm - system-role - langchain license: gemma --- # gemma-2-2b-it-fix-system-role Quantized version of [gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it) and update **`chat_template`** for support **`system`** role to handle cases: - `Conversation roles must alternate user/assistant/user/assistant/...` - `System role not supported` ## Model Overview - **Model Architecture:** Gemma 2 - **Input:** Text - **Output:** Text - **Release Date:** 04/12/2024 - **Version:** 1.0 ## Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. With CLI: ```bash vllm serve --model dangvansam/gemma-2-2b-it-fix-system-role ``` ```bash curl http://localhost:8000/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "dangvansam/gemma-2-2b-it-fix-system-role", "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Who are you?"} ] }' ``` With Python: ```python from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = "dangvansam/gemma-2-2b-it-fix-system-role" sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256) tokenizer = AutoTokenizer.from_pretrained(model_id) messages = [ {"role": "system", "content": "You are helpfull assistant."}, {"role": "user", "content": "Who are you?"} ] prompts = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) llm = LLM(model=model_id) outputs = llm.generate(prompts, sampling_params) generated_text = outputs[0].outputs[0].text print(generated_text) ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.