{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9bce3664d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9bce366560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9bce3665f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9bce366680>", "_build": "<function ActorCriticPolicy._build at 0x7f9bce366710>", "forward": "<function ActorCriticPolicy.forward at 0x7f9bce3667a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9bce366830>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9bce3668c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9bce366950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9bce3669e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9bce366a70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9bce38b150>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVhwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsChZRoColDCJqZmb8pXI+9lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsChZRoColDCJqZGT8pXI89lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsChZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAgEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsChZRoKolDAgEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVewEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsBhZRoColDBAAAgL+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSwGFlGgKiUMEAACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLAYWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsBhZRoKoloLXSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [1], "low": "[-1.]", "high": "[1.]", "bounded_below": "[ True]", "bounded_above": "[ True]", "_np_random": null}, "n_envs": 1, "num_timesteps": 20000, "_total_timesteps": 20000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1655745436.2788713, "learning_rate": 7.77e-05, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8UXlvV6awBhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVkgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMIOCJav1EPt7yUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASV+gYAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFJ++Sr5qM6MAWyUTRQCjAF0lEdAaNkYD1XeWXV9lChoBkdAVUffAKv3amgHTSMBaAhHQGkiDU3GXHB1fZQoaAZHQFLfq3EyckNoB03vAWgIR0Bpodf3N9pidX2UKGgGR0BLSCVbA1vVaAdNiQNoCEdAaoxs3yZrpXV9lChoBkdAVee5QP7N0WgHTSABaAhHQGrX3l8w5/91fZQoaAZHQFIHEIgNgBtoB00sAmgIR0BrbCHM2WIHdX2UKGgGR0BUfdy1eBxxaAdNjgFoCEdAa9XCMxXXAnV9lChoBkdAVm9Tgl4TsmgHS6poCEdAbAI23rleW3V9lChoBkdAUtJ05lvqDGgHTb4BaAhHQGx454W1twd1fZQoaAZHQFZQrkbPyCpoB0uqaAhHQGylLp7kXDZ1fZQoaAZHQFPnpj+aScNoB02WAWgIR0BtEHBP9DQadX2UKGgGR0BVZSqIacZtaAdNCgFoCEdAbVTZ6D5CW3V9lChoBkdAUp3gWJrLyWgHTekBaAhHQG3UnPeHi3p1fZQoaAZHQFSfmLLpzLhoB00OAWgIR0BuGx/mT1TSdX2UKGgGR0BJ3sg+yJKraAdNLgNoCEdAbu4mBvrGBHV9lChoBkdATsTOgQHzH2gHTZQCaAhHQG+Zk0BOpKl1fZQoaAZHQErYj2SMcZNoB01qAmgIR0BwHFsZYPoWdX2UKGgGR0BQYwCKaXruaAdNMAJoCEdAcGU81n/T9nV9lChoBkdAUoAQGwA2h2gHTbcBaAhHQHCeFQ2uPmx1fZQoaAZHQFVfKIBRyfdoB0vYaAhHQHC57qY7aIx1fZQoaAZHQFcUU5dWyTpoB0t2aAhHQHDJYx59mYl1fZQoaAZHQFbgG8274BVoB0txaAhHQHDX4BzV+Zx1fZQoaAZHQE/lq0MPSUloB01YAmgIR0BxJo5wOvt/dX2UKGgGR0BW0rAk9lmOaAdLiGgIR0BxOEMb3oLYdX2UKGgGR0BUZjCUHIIXaAdNKwFoCEdAcV7tfoicG3V9lChoBkdARzlhd+ocaWgHTQcDaAhHQHHE8Oskpqh1fZQoaAZHQFVVPo3aSLZoB0vOaAhHQHHfUpqh11Z1fZQoaAZHQFK20Mw1zhhoB02UAWgIR0ByE9cu8K5TdX2UKGgGR0BQ2uskpqh2aAdN3gFoCEdAclGSgGr0a3V9lChoBkdAVvnrrxAjZGgHS3FoCEdAcmAaPjn3c3V9lChoBkdAVumMhouf3GgHS1hoCEdAcmuRXwLE1nV9lChoBkdAVmKdSVGCqmgHS4NoCEdAcn0UC7sfJXV9lChoBkdAUbtdnkDIR2gHTXkBaAhHQHKt5kXk5p91fZQoaAZHQFRUmWt2cKBoB0vjaAhHQHLLC/O+qR51fZQoaAZHQFHl5T6zmfZoB02jAWgIR0BzAmK+BYmtdX2UKGgGR0BTvbHQyAQQaAdNCwFoCEdAcyS0u14PgHV9lChoBkdAUKKuA7Ppp2gHTbkBaAhHQHNd5nctXgd1fZQoaAZHQFJAQ9zOopBoB01nAWgIR0BzjGTRplBhdX2UKGgGR0BF6ZBLPD51aAdN0QJoCEdAc+mJDVpblnV9lChoBkdASy/phWo3rGgHTW0CaAhHQHQ6dZaFEiN1fZQoaAZHQFAl1lGwzLxoB01+AWgIR0B0azKdQO4HdX2UKGgGR0BW9+1Bt1p1aAdLYmgIR0B0eJL8JlasdX2UKGgGR0BUEDm0VrRCaAdNNgFoCEdAdJ/ZYPoV23V9lChoBkdAUzHRsuWa+mgHTSsBaAhHQHTHGxQizLR1fZQoaAZHQFZ1YeT3Zf5oB0uDaAhHQHTX4rSVnmJ1fZQoaAZHQFccuhsZYPpoB0t7aAhHQHToQ+hXbM51fZQoaAZHQFP1NUfgaWJoB0v7aAhHQHUIgoCuEEl1fZQoaAZHQFdwb7CSA6NoB0tLaAhHQHUR2cvugHx1fZQoaAZHQFIdtDD0lJJoB01hAWgIR0B1P8CDEm6YdX2UKGgGR0BKqehGpda/aAdNQwJoCEdAdYuV6/qPfnV9lChoBkdAVzzko4MnZ2gHS1NoCEdAdZYD7qIJq3V9lChoBkdAVYWgam4y5GgHS65oCEdAdayR51Ng0HV9lChoBkdAVpAZydWhiGgHS4xoCEdAdb4khzNliHV9lChoBkdAT93+MqBmPGgHTZcBaAhHQHXzDhP0qYt1fZQoaAZHQFWIaQmu1WtoB0ujaAhHQHYI4QarFOx1fZQoaAZHQFYAwDvE0i1oB0uYaAhHQHYcxQ79ycV1fZQoaAZHQFJUC6Ymb9ZoB01qAWgIR0B2TD5HmRvFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 8, "gamma": 0.9999, "gae_lambda": 0.9, "ent_coef": 0.00429, "vf_coef": 0.19, "max_grad_norm": 5, "batch_size": 256, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+5mZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}} |