File size: 8,374 Bytes
a966d6e 7aa21e7 11b0a38 7aa21e7 dc8b948 7aa21e7 121c639 a966d6e 2a7cdeb 7aa21e7 dc8b948 e14d8f6 7aa21e7 dc8b948 543a346 7aa21e7 86b24ad a883320 86b24ad 7aa21e7 eb3ff3c 7aa21e7 a883320 7aa21e7 438b69e 7aa21e7 121c639 7aa21e7 a883320 7aa21e7 a883320 7aa21e7 dc8b948 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
---
language:
- en
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- art
- artistic
- diffusers
- protogen
inference: true
license: creativeml-openrail-m
---
<center><img src="https://huggingface.co/darkstorm2150/Protogen_x3.4_Official_Release/resolve/main/Protogen_x3.4-512.png" style="height:690px; border-radius: 8%; border: 10px solid #663380; padding-top:0px;" span title="Protogen x3.4 Raw Output"></center>
<center><h1>Protogen x3.4</h1></center>
<center><p><em>Research Model by <a href="https://instagram.com/officialvictorespinoza">darkstorm2150</a></em></p></center>
</div>
## Table of contents
* [General info](#general-info)
* [Granular Adaptive Learning](#granular-adaptive-learning)
* [Setup](#setup)
* [Space](#space)
* [CompVis](#compvis)
* [Diffusers](#🧨-diffusers)
* [Checkpoint Merging Data Reference](#checkpoint-merging-data-reference)
* [License](#license)
## General info
Protogen x3.4
Protogen was warm-started with [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) and fine-tuned on various high quality image datasets.
Version 3.4 continued training from [ProtoGen v2.2](https://huggingface.co/darkstorm2150/Protogen_v2.2_Official_Release) with added photorealism.
## Granular Adaptive Learning
Granular adaptive learning is a machine learning technique that focuses on adjusting the learning process at a fine-grained level, rather than making global adjustments to the model. This approach allows the model to adapt to specific patterns or features in the data, rather than making assumptions based on general trends.
Granular adaptive learning can be achieved through techniques such as active learning, which allows the model to select the data it wants to learn from, or through the use of reinforcement learning, where the model receives feedback on its performance and adapts based on that feedback. It can also be achieved through techniques such as online learning where the model adjust itself as it receives more data.
Granular adaptive learning is often used in situations where the data is highly diverse or non-stationary and where the model needs to adapt quickly to changing patterns. This is often the case in dynamic environments such as robotics, financial markets, and natural language processing.
## Setup
To run this model, download the model.ckpt and install it in your "stable-diffusion-webui\models\Stable-diffusion" directory
## Space
We support a [Gradio](https://github.com/gradio-app/gradio) Web UI:
[![Open In Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/darkstorm2150/Stable-Diffusion-Protogen-webui)
### CompVis
## CKPT
[Download ProtoGen x3.4.ckpt (5.98GB)](https://huggingface.co/darkstorm2150/Protogen_x3.4_Official_Release/resolve/main/ProtoGen_X3.4.ckpt)
[Download ProtoGen X3.4-pruned-fp16.ckpt (1.89 GB)](https://huggingface.co/darkstorm2150/Protogen_x3.4_Official_Release/resolve/main/ProtoGen_X3.4-pruned-fp16.ckpt)
## Safetensors
[Download ProtoGen x3.4.safetensors (5.98GB)](https://huggingface.co/darkstorm2150/Protogen_x3.4_Official_Release/resolve/main/ProtoGen_X3.4.safetensors)
[Download ProtoGen x3.4-pruned-fp16.safetensors (1.89GB)](https://huggingface.co/darkstorm2150/Protogen_x3.4_Official_Release/resolve/main/ProtoGen_X3.4-pruned-fp16.safetensors)
### 🧨 Diffusers
This model can be used just like any other Stable Diffusion model. For more information,
please have a look at the [Stable Diffusion Pipeline](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
```python
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
import torch
prompt = (
"modelshoot style, (extremely detailed CG unity 8k wallpaper), full shot body photo of the most beautiful artwork in the world, "
"english medieval witch, black silk vale, pale skin, black silk robe, black cat, necromancy magic, medieval era, "
"photorealistic painting by Ed Blinkey, Atey Ghailan, Studio Ghibli, by Jeremy Mann, Greg Manchess, Antonio Moro, trending on ArtStation, "
"trending on CGSociety, Intricate, High Detail, Sharp focus, dramatic, photorealistic painting art by midjourney and greg rutkowski"
)
model_id = "darkstorm2150/Protogen_x3.4_Official_Release"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
image = pipe(prompt, num_inference_steps=25).images[0]
image.save("./result.jpg")
```
![img](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/protogen/rswf5qk9be9a1.jpg)
## PENDING DATA FOR MERGE, RPGv2 not accounted..
## Checkpoint Merging Data Reference
<style>
.myTable {
border-collapse:collapse;
}
.myTable th {
background-color:#663380;
color:white;
}
.myTable td, .myTable th {
padding:5px;
border:1px solid #663380;
}
</style>
<table class="myTable">
<tr>
<th>Models</th>
<th>Protogen v2.2 (Anime)</th>
<th>Protogen x3.4 (Photo)</th>
<th>Protogen x5.3 (Photo)</th>
<th>Protogen x5.8 (Sci-fi/Anime)</th>
<th>Protogen x5.9 (Dragon)</th>
<th>Protogen x7.4 (Eclipse)</th>
<th>Protogen x8.0 (Nova)</th>
<th>Protogen x8.6 (Infinity)</th>
</tr>
<tr>
<td>seek_art_mega v1</td>
<td>52.50%</td>
<td>42.76%</td>
<td>42.63%</td>
<td></td>
<td></td>
<td></td>
<td>25.21%</td>
<td>14.83%</td>
</tr>
<tr>
<td>modelshoot v1</td>
<td>30.00%</td>
<td>24.44%</td>
<td>24.37%</td>
<td>2.56%</td>
<td>2.05%</td>
<td>3.48%</td>
<td>22.91%</td>
<td>13.48%</td>
</tr>
<tr>
<td>elldreth v1</td>
<td>12.64%</td>
<td>10.30%</td>
<td>10.23%</td>
<td></td>
<td></td>
<td></td>
<td>6.06%</td>
<td>3.57%</td>
</tr>
<tr>
<td>photoreal v2</td>
<td></td>
<td></td>
<td>10.00%</td>
<td>48.64%</td>
<td>38.91%</td>
<td>66.33%</td>
<td>20.49%</td>
<td>12.06%</td>
</tr>
<tr>
<td>analogdiffusion v1</td>
<td></td>
<td>4.75%</td>
<td>4.50%</td>
<td></td>
<td></td>
<td></td>
<td>1.75%</td>
<td>1.03%</td>
</tr>
<tr>
<td>openjourney v2</td>
<td></td>
<td>4.51%</td>
<td>4.28%</td>
<td></td>
<td></td>
<td>4.75%</td>
<td>2.26%</td>
<td>1.33%</td>
</tr>
<tr>
<td>hassan1.4</td>
<td>2.63%</td>
<td>2.14%</td>
<td>2.13%</td>
<td></td>
<td></td>
<td></td>
<td>1.26%</td>
<td>0.74%</td>
</tr>
<tr>
<td>f222</td>
<td>2.23%</td>
<td>1.82%</td>
<td>1.81%</td>
<td></td>
<td></td>
<td></td>
<td>1.07%</td>
<td>0.63%</td>
</tr>
<tr>
<td>hasdx</td>
<td></td>
<td></td>
<td></td>
<td>20.00%</td>
<td>16.00%</td>
<td>4.07%</td>
<td>5.01%</td>
<td>2.95%</td>
</tr>
<tr>
<td>moistmix</td>
<td></td>
<td></td>
<td></td>
<td>16.00%</td>
<td>12.80%</td>
<td>3.86%</td>
<td>4.08%</td>
<td>2.40%</td>
</tr>
<tr>
<td>roboDiffusion v1</td>
<td></td>
<td>4.29%</td>
<td></td>
<td>12.80%</td>
<td>10.24%</td>
<td>3.67%</td>
<td>4.41%</td>
<td>2.60%</td>
</tr>
<tr>
<td>RPG v3</td>
<td></td>
<td>5.00%</td>
<td></td>
<td></td>
<td>20.00%</td>
<td>4.29%</td>
<td>4.29%</td>
<td>2.52%</td>
</tr>
<tr>
<td>anything&everything</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.51%</td>
<td>0.56%</td>
<td>0.33%</td>
</tr>
<tr>
<td>dreamlikediff v1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0%</td>
<td>0.63%</td>
<td>0.37%</td>
</tr>
<tr>
<td>sci-fidiff v1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.10%</td>
</tr>
<tr>
<td>synthwavepunk v2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.26%</td>
</tr>
<tr>
<td>mashupv2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.51%</td>
</tr>
<tr>
<td>dreamshaper 252</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.04%</td>
</tr>
<tr>
<td>comicdiff v2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.25%</td>
</tr>
<tr>
<td>artEros</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.00%</td>
</tr>
</table>
## License
By downloading you agree to the terms of these licenses
<a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license">CreativeML Open RAIL-M</a>
<a href="https://huggingface.co/coreco/seek.art_MEGA/blob/main/LICENSE.txt">Seek Art Mega License</a> |