File size: 1,284 Bytes
e712e55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
license: mit
datasets:
- dasanindya15/Cladder_v1
---
### Loading Model and Tokenizer:
```python
base_model_id = "NousResearch/Meta-Llama-3-8B"
new_model_id = "dasanindya15/llama3-8b_qlora_Cladder_v1"
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from peft import PeftModel
from transformers import BitsAndBytesConfig
# Load the entire model on the GPU 0
device_map = {"": 0}
# Reload model in FP16 and merge it with LoRA weights
# specify the quantize the model
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
base_model = AutoModelForCausalLM.from_pretrained(base_model_id,
quantization_config=quantization_config,
device_map=device_map)
model = PeftModel.from_pretrained(base_model, new_model_id)
# Reload tokenizer to save it
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
```
---
license: mit
datasets:
- dasanindya15/Cladder_v1
pipeline_tag: text-classification
--- |