--- license: mit datasets: - dasanindya15/Cladder_v1 --- ### Loading Model and Tokenizer: ```python base_model_id = "NousResearch/Meta-Llama-3-8B" new_model_id = "dasanindya15/llama3-8b_qlora_Cladder_v1" import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from peft import PeftModel from transformers import BitsAndBytesConfig # Load the entire model on the GPU 0 device_map = {"": 0} # Reload model in FP16 and merge it with LoRA weights # specify the quantize the model quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) base_model = AutoModelForCausalLM.from_pretrained(base_model_id, quantization_config=quantization_config, device_map=device_map) model = PeftModel.from_pretrained(base_model, new_model_id) # Reload tokenizer to save it tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "right" ``` --- license: mit datasets: - dasanindya15/Cladder_v1 pipeline_tag: text-classification ---