data-silence
commited on
Commit
•
898096f
1
Parent(s):
e0ce234
Update README.md
Browse files
README.md
CHANGED
@@ -43,7 +43,7 @@ It achieves the following results on the evaluation set:
|
|
43 |
|
44 |
## Model description
|
45 |
|
46 |
-
This is a multi-class classifier of Russian news, made with the LaBSE model finetune for
|
47 |
The news category is assigned by the classifier to one of 11 categories:
|
48 |
- climate (климат)
|
49 |
- conflicts (конфликты)
|
@@ -57,6 +57,41 @@ The news category is assigned by the classifier to one of 11 categories:
|
|
57 |
- sports (спорт)
|
58 |
- travel (путешествия)
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
## Intended uses & limitations
|
61 |
|
62 |
Enjoy to use in your purpose
|
|
|
43 |
|
44 |
## Model description
|
45 |
|
46 |
+
This is a multi-class classifier of Russian news, made with the LaBSE model finetune for [AntiSMI Project](https://github.com/data-silence/antiSMI-Project).
|
47 |
The news category is assigned by the classifier to one of 11 categories:
|
48 |
- climate (климат)
|
49 |
- conflicts (конфликты)
|
|
|
57 |
- sports (спорт)
|
58 |
- travel (путешествия)
|
59 |
|
60 |
+
## How to use
|
61 |
+
|
62 |
+
```
|
63 |
+
python
|
64 |
+
|
65 |
+
from transformers import pipeline
|
66 |
+
|
67 |
+
category_mapper = {
|
68 |
+
'LABEL_0': 'climate',
|
69 |
+
'LABEL_1': 'conflicts',
|
70 |
+
'LABEL_2': 'culture',
|
71 |
+
'LABEL_3': 'economy',
|
72 |
+
'LABEL_4': 'gloss',
|
73 |
+
'LABEL_5': 'health',
|
74 |
+
'LABEL_6': 'politics',
|
75 |
+
'LABEL_7': 'science',
|
76 |
+
'LABEL_8': 'society',
|
77 |
+
'LABEL_9': 'sports',
|
78 |
+
'LABEL_10': 'travel'
|
79 |
+
}
|
80 |
+
|
81 |
+
# Используйте предобученную модель из Hugging Face Hub
|
82 |
+
classifier = pipeline("text-classification", model="data-silence/rus-news-classifier")
|
83 |
+
|
84 |
+
def predict_category(text):
|
85 |
+
result = classifier(text)
|
86 |
+
category = category_mapper[result[0]['label']]
|
87 |
+
score = result[0]['score']
|
88 |
+
return category, score
|
89 |
+
|
90 |
+
predict_category("В Париже завершилась церемония закрытия Олимпийских игр")
|
91 |
+
# ('sports', 0.9959506988525391)
|
92 |
+
```
|
93 |
+
|
94 |
+
|
95 |
## Intended uses & limitations
|
96 |
|
97 |
Enjoy to use in your purpose
|