--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - f1 - accuracy - precision - recall model-index: - name: dress-classifier results: [] --- # dress-classifier This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - F1: 0.9260 - Loss: 0.3490 - Accuracy: 0.9256 - Precision: 0.9265 - Recall: 0.9256 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | F1 | Validation Loss | Accuracy | Precision | Recall | |:-------------:|:-----:|:----:|:------:|:---------------:|:--------:|:---------:|:------:| | No log | 1.0 | 269 | 0.8817 | 0.2965 | 0.8940 | 0.8942 | 0.8940 | | 0.3442 | 2.0 | 538 | 0.9133 | 0.2740 | 0.9163 | 0.9133 | 0.9163 | | 0.3442 | 3.0 | 807 | 0.9096 | 0.2904 | 0.9060 | 0.9174 | 0.9060 | | 0.1397 | 4.0 | 1076 | 0.9231 | 0.3103 | 0.9237 | 0.9227 | 0.9237 | | 0.1397 | 5.0 | 1345 | 0.9260 | 0.3490 | 0.9256 | 0.9265 | 0.9256 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1