import fasttext from transformers import pipeline class FastTextClassifierPipeline(pipeline): def __init__(self, model_path): self.model = fasttext.load_model(model_path) def __call__(self, texts): if isinstance(texts, str): texts = [texts] results = [] for text in texts: prediction = self.model.predict(text) label = prediction[0][0].replace("__label__", "") score = prediction[1][0] results.append({"label": label, "score": score}) return results classifier = FastTextClassifierPipeline("fasttext_news_classifier.bin")