dolly-v2-3b / instruct_pipeline.py
alexis779's picture
Avoid validation error on duplicated attribute
a936b36 verified
raw
history blame
9.1 kB
import logging
import re
from typing import List
import numpy as np
from transformers import Pipeline, PreTrainedTokenizer
from transformers.utils import is_tf_available
if is_tf_available():
import tensorflow as tf
logger = logging.getLogger(__name__)
INSTRUCTION_KEY = "### Instruction:"
RESPONSE_KEY = "### Response:"
END_KEY = "### End"
INTRO_BLURB = (
"Below is an instruction that describes a task. Write a response that appropriately completes the request."
)
# This is the prompt that is used for generating responses using an already trained model. It ends with the response
# key, where the job of the model is to provide the completion that follows it (i.e. the response itself).
PROMPT_FOR_GENERATION_FORMAT = """{intro}
{instruction_key}
{instruction}
{response_key}
""".format(
intro=INTRO_BLURB,
instruction_key=INSTRUCTION_KEY,
instruction="{instruction}",
response_key=RESPONSE_KEY,
)
def get_special_token_id(tokenizer: PreTrainedTokenizer, key: str) -> int:
"""Gets the token ID for a given string that has been added to the tokenizer as a special token.
When training, we configure the tokenizer so that the sequences like "### Instruction:" and "### End" are
treated specially and converted to a single, new token. This retrieves the token ID each of these keys map to.
Args:
tokenizer (PreTrainedTokenizer): the tokenizer
key (str): the key to convert to a single token
Raises:
RuntimeError: if more than one ID was generated
Returns:
int: the token ID for the given key
"""
token_ids = tokenizer.encode(key)
if len(token_ids) > 1:
raise ValueError(f"Expected only a single token for '{key}' but found {token_ids}")
return token_ids[0]
class InstructionTextGenerationPipeline(Pipeline):
def __init__(
self, *args, do_sample: bool = True, max_new_tokens: int = 256, top_p: float = 0.92, top_k: int = 0, **kwargs
):
"""Initialize the pipeline
Args:
do_sample (bool, optional): Whether or not to use sampling. Defaults to True.
max_new_tokens (int, optional): Max new tokens after the prompt to generate. Defaults to 128.
top_p (float, optional): If set to float < 1, only the smallest set of most probable tokens with
probabilities that add up to top_p or higher are kept for generation. Defaults to 0.92.
top_k (int, optional): The number of highest probability vocabulary tokens to keep for top-k-filtering.
Defaults to 0.
"""
super().__init__(*args, do_sample=do_sample, max_new_tokens=max_new_tokens, top_p=top_p, top_k=top_k,
**kwargs)
def _sanitize_parameters(self,
return_full_text: bool = None,
**generate_kwargs):
preprocess_params = {}
# newer versions of the tokenizer configure the response key as a special token. newer versions still may
# append a newline to yield a single token. find whatever token is configured for the response key.
tokenizer_response_key = next(
(token for token in self.tokenizer.additional_special_tokens if token.startswith(RESPONSE_KEY)), None
)
response_key_token_id = None
end_key_token_id = None
if tokenizer_response_key:
try:
response_key_token_id = get_special_token_id(self.tokenizer, tokenizer_response_key)
end_key_token_id = get_special_token_id(self.tokenizer, END_KEY)
# Ensure generation stops once it generates "### End"
generate_kwargs["eos_token_id"] = end_key_token_id
except ValueError:
pass
forward_params = generate_kwargs
postprocess_params = {
"response_key_token_id": response_key_token_id,
"end_key_token_id": end_key_token_id
}
if return_full_text is not None:
postprocess_params["return_full_text"] = return_full_text
return preprocess_params, forward_params, postprocess_params
def preprocess(self, instruction_text, **generate_kwargs):
prompt_text = PROMPT_FOR_GENERATION_FORMAT.format(instruction=instruction_text)
inputs = self.tokenizer(
prompt_text,
return_tensors="pt",
)
inputs["prompt_text"] = prompt_text
inputs["instruction_text"] = instruction_text
return inputs
def _forward(self, model_inputs, **generate_kwargs):
input_ids = model_inputs["input_ids"]
attention_mask = model_inputs.get("attention_mask", None)
if input_ids.shape[1] == 0:
input_ids = None
attention_mask = None
in_b = 1
else:
in_b = input_ids.shape[0]
generated_sequence = self.model.generate(
input_ids=input_ids.to(self.model.device),
attention_mask=attention_mask.to(self.model.device) if attention_mask is not None else None,
**generate_kwargs,
)
out_b = generated_sequence.shape[0]
if self.framework == "pt":
generated_sequence = generated_sequence.reshape(in_b, out_b // in_b, *generated_sequence.shape[1:])
elif self.framework == "tf":
generated_sequence = tf.reshape(generated_sequence, (in_b, out_b // in_b, *generated_sequence.shape[1:]))
instruction_text = model_inputs.pop("instruction_text")
return {"generated_sequence": generated_sequence, "input_ids": input_ids, "instruction_text": instruction_text}
def postprocess(self, model_outputs, response_key_token_id, end_key_token_id, return_full_text: bool = False):
generated_sequence = model_outputs["generated_sequence"][0]
instruction_text = model_outputs["instruction_text"]
generated_sequence: List[List[int]] = generated_sequence.numpy().tolist()
records = []
for sequence in generated_sequence:
# The response will be set to this variable if we can identify it.
decoded = None
# If we have token IDs for the response and end, then we can find the tokens and only decode between them.
if response_key_token_id and end_key_token_id:
# Find where "### Response:" is first found in the generated tokens. Considering this is part of the
# prompt, we should definitely find it. We will return the tokens found after this token.
try:
response_pos = sequence.index(response_key_token_id)
except ValueError:
logger.warn(f"Could not find response key {response_key_token_id} in: {sequence}")
response_pos = None
if response_pos:
# Next find where "### End" is located. The model has been trained to end its responses with this
# sequence (or actually, the token ID it maps to, since it is a special token). We may not find
# this token, as the response could be truncated. If we don't find it then just return everything
# to the end. Note that even though we set eos_token_id, we still see the this token at the end.
try:
end_pos = sequence.index(end_key_token_id)
except ValueError:
end_pos = None
decoded = self.tokenizer.decode(sequence[response_pos + 1 : end_pos]).strip()
if not decoded:
# Otherwise we'll decode everything and use a regex to find the response and end.
fully_decoded = self.tokenizer.decode(sequence)
# The response appears after "### Response:". The model has been trained to append "### End" at the
# end.
m = re.search(r"#+\s*Response:\s*(.+?)#+\s*End", fully_decoded, flags=re.DOTALL)
if m:
decoded = m.group(1).strip()
else:
# The model might not generate the "### End" sequence before reaching the max tokens. In this case,
# return everything after "### Response:".
m = re.search(r"#+\s*Response:\s*(.+)", fully_decoded, flags=re.DOTALL)
if m:
decoded = m.group(1).strip()
else:
logger.warn(f"Failed to find response in:\n{fully_decoded}")
# If the full text is requested, then append the decoded text to the original instruction.
# This technically isn't the full text, as we format the instruction in the prompt the model has been
# trained on, but to the client it will appear to be the full text.
if return_full_text:
decoded = f"{instruction_text}\n{decoded}"
rec = {"generated_text": decoded}
records.append(rec)
return records