File size: 1,898 Bytes
df23032 5dc6355 df23032 5dc6355 df23032 5dc6355 df23032 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
library_name: transformers
license: apache-2.0
base_model: datamonster/ms-cond-detr-res-50-vehicles
tags:
- generated_from_trainer
model-index:
- name: ms-cond-detr-res-50-vehicles
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ms-cond-detr-res-50-vehicles
This model is a fine-tuned version of [datamonster/ms-cond-detr-res-50-vehicles](https://huggingface.co/datamonster/ms-cond-detr-res-50-vehicles) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.8407
- eval_map: 0.5078
- eval_map_50: 0.8475
- eval_map_75: 0.543
- eval_map_small: 0.1375
- eval_map_medium: 0.5038
- eval_map_large: 0.7143
- eval_mar_1: 0.2612
- eval_mar_10: 0.5658
- eval_mar_100: 0.6127
- eval_mar_small: 0.3327
- eval_mar_medium: 0.6156
- eval_mar_large: 0.7981
- eval_map_motorbike: 0.3689
- eval_mar_100_motorbike: 0.4835
- eval_map_car: 0.5308
- eval_mar_100_car: 0.6198
- eval_map_bus: 0.5808
- eval_mar_100_bus: 0.6911
- eval_map_container: 0.5506
- eval_mar_100_container: 0.6566
- eval_runtime: 144.8577
- eval_samples_per_second: 15.898
- eval_steps_per_second: 1.988
- epoch: 36.0
- step: 82980
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- num_epochs: 60
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
|