Datasets:
File size: 4,310 Bytes
39d0e8b 4d63067 39d0e8b 67eaf4e 4d63067 67eaf4e 4d63067 7a56577 b932401 4d63067 5d33d66 4d63067 5d33d66 4d63067 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
---
license: mit
task_categories:
- image-classification
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype:
class_label:
names:
'0': '1'
'1': '2'
'2': '3'
'3': '4'
'4': '5'
'5': '6'
splits:
- name: train
num_bytes: 16680937.624
num_examples: 14694
- name: validation
num_bytes: 3191950.1
num_examples: 2100
- name: test
num_bytes: 5527485.6
num_examples: 4200
download_size: 24752623
dataset_size: 25400373.324
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
tags:
- computer-vision
- image-classification
- synthetic-data
pretty_name: Geometric Shapes Dataset
size_categories:
- 1K<n<10K
---
# Dataset Card for Geometric Shapes Dataset
## Dataset Description
### Dataset Summary
The Geometric Shapes Dataset is a synthetic dataset containing images of various geometric shapes with superimposed random text. Each image features a polygon (or just text) on a randomly colored background, with a short string of random characters partially obscuring the shape. This dataset is designed for tasks such as shape classification, image recognition, and robustness testing of computer vision models.
### Supported Tasks and Leaderboards
- **Image Classification**: The primary task for this dataset is multi-class image classification, where the goal is to identify the type of shape (or lack thereof) in each image.
| Label | Shape Name | Image |
|:--------------:|:------------:|:--------------------------------------------------------------:|
| 1 | None | ![None](example/1_None.jpg "None") |
| 2 | Circle | ![Circle](example/2_Circle.jpg "Circle") |
| 3 | Triangle | ![Triangle](example/3_Triangle.jpg "Triangle") |
| 4 | Square | ![Square](example/4_Square.jpg "Square") |
| 5 | Pentagone | ![Pentagone](example/5_Pentagone.jpg "Pentagone") |
| 6 | Hexagone | ![Hexagone](example/6_Hexagone.jpg "Hexagone") |
### Data Instances
Each instance in the dataset consists of:
- An image (50x50 pixels, RGB)
- A label indicating the type of shape
### Data Fields
- `image`: A 50x50 pixel RGB image in numpy array format.
- `label`: A string indicating the shape type. The labels correspond to the following shapes:
- "1": No shape, only random text on a colored background
- "2": Circle-like shape (polygon with 100 sides)
- "3": Triangle
- "4": Square
- "5": Pentagon
Each image contains:
1. A randomly colored background
2. The specified geometric shape (except for label "1") filled with a different random color
3. A short string (4 characters) of random alphanumeric text overlaid on top, partially obscuring the shape
Note: The "Circle" (label "2") is approximated by a 100-sided polygon, which appears circular at the given resolution.
### Data Splits
The dataset is split into train (70%), validation (10%), and test (20%) sets.
## Dataset Creation
This dataset was created to provide a simple, controlled environment for testing image classification models, particularly in scenarios where the primary subject (the geometric shape) is partially obscured by text.
### Source Data
#### Data Generation
The data is synthetically generated using the 'generate_geometric_shapes_dataset.py' of the project from the project https://github.com/0-ma/geometric-shape-detector. No external data sources were used.
### Annotations
#### Annotation process
The annotations (labels) are generated automatically during the image creation process.
### Personal and Sensitive Information
This dataset does not contain any personal or sensitive information.
### Other Known Limitations
- The dataset is limited to a small set of predefined shapes.
- The image resolution is fixed at 50x50 pixels.
- The text overlay is always present, which may not reflect all real-world scenarios.
### Licensing Information
This dataset is released under the MIT License.
|