File size: 4,310 Bytes
39d0e8b
4d63067
39d0e8b
 
67eaf4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d63067
 
 
 
 
 
 
67eaf4e
4d63067
 
 
 
 
 
 
 
 
 
 
 
 
7a56577
 
 
 
 
 
 
 
b932401
4d63067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d33d66
4d63067
5d33d66
4d63067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
license: mit
task_categories:
- image-classification
dataset_info:
  features:
  - name: image
    dtype: image
  - name: label
    dtype:
      class_label:
        names:
          '0': '1'
          '1': '2'
          '2': '3'
          '3': '4'
          '4': '5'
          '5': '6'
  splits:
  - name: train
    num_bytes: 16680937.624
    num_examples: 14694
  - name: validation
    num_bytes: 3191950.1
    num_examples: 2100
  - name: test
    num_bytes: 5527485.6
    num_examples: 4200
  download_size: 24752623
  dataset_size: 25400373.324
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
tags:
- computer-vision
- image-classification
- synthetic-data
pretty_name: Geometric Shapes Dataset
size_categories:
- 1K<n<10K
---

# Dataset Card for Geometric Shapes Dataset

## Dataset Description

### Dataset Summary

The Geometric Shapes Dataset is a synthetic dataset containing images of various geometric shapes with superimposed random text. Each image features a polygon (or just text) on a randomly colored background, with a short string of random characters partially obscuring the shape. This dataset is designed for tasks such as shape classification, image recognition, and robustness testing of computer vision models.

### Supported Tasks and Leaderboards

- **Image Classification**: The primary task for this dataset is multi-class image classification, where the goal is to identify the type of shape (or lack thereof) in each image.

| Label        | Shape Name | Image                                                        |
|:--------------:|:------------:|:--------------------------------------------------------------:|
| 1            | None       | ![None](example/1_None.jpg "None")                           |
| 2            | Circle     | ![Circle](example/2_Circle.jpg "Circle")                     |
| 3            | Triangle   | ![Triangle](example/3_Triangle.jpg "Triangle")               |
| 4            | Square     | ![Square](example/4_Square.jpg "Square")                     |
| 5            | Pentagone  | ![Pentagone](example/5_Pentagone.jpg "Pentagone")            |
| 6            | Hexagone   | ![Hexagone](example/6_Hexagone.jpg "Hexagone")               |


### Data Instances

Each instance in the dataset consists of:
- An image (50x50 pixels, RGB)
- A label indicating the type of shape

### Data Fields

- `image`: A 50x50 pixel RGB image in numpy array format.
- `label`: A string indicating the shape type. The labels correspond to the following shapes:
  - "1": No shape, only random text on a colored background
  - "2": Circle-like shape (polygon with 100 sides)
  - "3": Triangle
  - "4": Square
  - "5": Pentagon

Each image contains:
1. A randomly colored background
2. The specified geometric shape (except for label "1") filled with a different random color
3. A short string (4 characters) of random alphanumeric text overlaid on top, partially obscuring the shape

Note: The "Circle" (label "2") is approximated by a 100-sided polygon, which appears circular at the given resolution.



### Data Splits

The dataset is split into train (70%), validation (10%), and test (20%) sets.

## Dataset Creation

This dataset was created to provide a simple, controlled environment for testing image classification models, particularly in scenarios where the primary subject (the geometric shape) is partially obscured by text.

### Source Data

#### Data Generation

The data is synthetically generated using the 'generate_geometric_shapes_dataset.py' of the project from the project https://github.com/0-ma/geometric-shape-detector. No external data sources were used.


### Annotations

#### Annotation process

The annotations (labels) are generated automatically during the image creation process.


### Personal and Sensitive Information

This dataset does not contain any personal or sensitive information.


### Other Known Limitations

- The dataset is limited to a small set of predefined shapes.
- The image resolution is fixed at 50x50 pixels.
- The text overlay is always present, which may not reflect all real-world scenarios.


### Licensing Information

This dataset is released under the MIT License.