Upload lora-scripts/sd-scripts/library/deepspeed_utils.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/library/deepspeed_utils.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import torch
|
4 |
+
from accelerate import DeepSpeedPlugin, Accelerator
|
5 |
+
|
6 |
+
from .utils import setup_logging
|
7 |
+
|
8 |
+
setup_logging()
|
9 |
+
import logging
|
10 |
+
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
|
13 |
+
|
14 |
+
def add_deepspeed_arguments(parser: argparse.ArgumentParser):
|
15 |
+
# DeepSpeed Arguments. https://huggingface.co/docs/accelerate/usage_guides/deepspeed
|
16 |
+
parser.add_argument("--deepspeed", action="store_true", help="enable deepspeed training")
|
17 |
+
parser.add_argument("--zero_stage", type=int, default=2, choices=[0, 1, 2, 3], help="Possible options are 0,1,2,3.")
|
18 |
+
parser.add_argument(
|
19 |
+
"--offload_optimizer_device",
|
20 |
+
type=str,
|
21 |
+
default=None,
|
22 |
+
choices=[None, "cpu", "nvme"],
|
23 |
+
help="Possible options are none|cpu|nvme. Only applicable with ZeRO Stages 2 and 3.",
|
24 |
+
)
|
25 |
+
parser.add_argument(
|
26 |
+
"--offload_optimizer_nvme_path",
|
27 |
+
type=str,
|
28 |
+
default=None,
|
29 |
+
help="Possible options are /nvme|/local_nvme. Only applicable with ZeRO Stage 3.",
|
30 |
+
)
|
31 |
+
parser.add_argument(
|
32 |
+
"--offload_param_device",
|
33 |
+
type=str,
|
34 |
+
default=None,
|
35 |
+
choices=[None, "cpu", "nvme"],
|
36 |
+
help="Possible options are none|cpu|nvme. Only applicable with ZeRO Stage 3.",
|
37 |
+
)
|
38 |
+
parser.add_argument(
|
39 |
+
"--offload_param_nvme_path",
|
40 |
+
type=str,
|
41 |
+
default=None,
|
42 |
+
help="Possible options are /nvme|/local_nvme. Only applicable with ZeRO Stage 3.",
|
43 |
+
)
|
44 |
+
parser.add_argument(
|
45 |
+
"--zero3_init_flag",
|
46 |
+
action="store_true",
|
47 |
+
help="Flag to indicate whether to enable `deepspeed.zero.Init` for constructing massive models."
|
48 |
+
"Only applicable with ZeRO Stage-3.",
|
49 |
+
)
|
50 |
+
parser.add_argument(
|
51 |
+
"--zero3_save_16bit_model",
|
52 |
+
action="store_true",
|
53 |
+
help="Flag to indicate whether to save 16-bit model. Only applicable with ZeRO Stage-3.",
|
54 |
+
)
|
55 |
+
parser.add_argument(
|
56 |
+
"--fp16_master_weights_and_gradients",
|
57 |
+
action="store_true",
|
58 |
+
help="fp16_master_and_gradients requires optimizer to support keeping fp16 master and gradients while keeping the optimizer states in fp32.",
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
def prepare_deepspeed_args(args: argparse.Namespace):
|
63 |
+
if not args.deepspeed:
|
64 |
+
return
|
65 |
+
|
66 |
+
# To avoid RuntimeError: DataLoader worker exited unexpectedly with exit code 1.
|
67 |
+
args.max_data_loader_n_workers = 1
|
68 |
+
|
69 |
+
|
70 |
+
def prepare_deepspeed_plugin(args: argparse.Namespace):
|
71 |
+
if not args.deepspeed:
|
72 |
+
return None
|
73 |
+
|
74 |
+
try:
|
75 |
+
import deepspeed
|
76 |
+
except ImportError as e:
|
77 |
+
logger.error(
|
78 |
+
"deepspeed is not installed. please install deepspeed in your environment with following command. DS_BUILD_OPS=0 pip install deepspeed"
|
79 |
+
)
|
80 |
+
exit(1)
|
81 |
+
|
82 |
+
deepspeed_plugin = DeepSpeedPlugin(
|
83 |
+
zero_stage=args.zero_stage,
|
84 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
85 |
+
gradient_clipping=args.max_grad_norm,
|
86 |
+
offload_optimizer_device=args.offload_optimizer_device,
|
87 |
+
offload_optimizer_nvme_path=args.offload_optimizer_nvme_path,
|
88 |
+
offload_param_device=args.offload_param_device,
|
89 |
+
offload_param_nvme_path=args.offload_param_nvme_path,
|
90 |
+
zero3_init_flag=args.zero3_init_flag,
|
91 |
+
zero3_save_16bit_model=args.zero3_save_16bit_model,
|
92 |
+
)
|
93 |
+
deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] = args.train_batch_size
|
94 |
+
deepspeed_plugin.deepspeed_config["train_batch_size"] = (
|
95 |
+
args.train_batch_size * args.gradient_accumulation_steps * int(os.environ["WORLD_SIZE"])
|
96 |
+
)
|
97 |
+
deepspeed_plugin.set_mixed_precision(args.mixed_precision)
|
98 |
+
if args.mixed_precision.lower() == "fp16":
|
99 |
+
deepspeed_plugin.deepspeed_config["fp16"]["initial_scale_power"] = 0 # preventing overflow.
|
100 |
+
if args.full_fp16 or args.fp16_master_weights_and_gradients:
|
101 |
+
if args.offload_optimizer_device == "cpu" and args.zero_stage == 2:
|
102 |
+
deepspeed_plugin.deepspeed_config["fp16"]["fp16_master_weights_and_grads"] = True
|
103 |
+
logger.info("[DeepSpeed] full fp16 enable.")
|
104 |
+
else:
|
105 |
+
logger.info(
|
106 |
+
"[DeepSpeed]full fp16, fp16_master_weights_and_grads currently only supported using ZeRO-Offload with DeepSpeedCPUAdam on ZeRO-2 stage."
|
107 |
+
)
|
108 |
+
|
109 |
+
if args.offload_optimizer_device is not None:
|
110 |
+
logger.info("[DeepSpeed] start to manually build cpu_adam.")
|
111 |
+
deepspeed.ops.op_builder.CPUAdamBuilder().load()
|
112 |
+
logger.info("[DeepSpeed] building cpu_adam done.")
|
113 |
+
|
114 |
+
return deepspeed_plugin
|
115 |
+
|
116 |
+
|
117 |
+
# Accelerate library does not support multiple models for deepspeed. So, we need to wrap multiple models into a single model.
|
118 |
+
def prepare_deepspeed_model(args: argparse.Namespace, **models):
|
119 |
+
# remove None from models
|
120 |
+
models = {k: v for k, v in models.items() if v is not None}
|
121 |
+
|
122 |
+
class DeepSpeedWrapper(torch.nn.Module):
|
123 |
+
def __init__(self, **kw_models) -> None:
|
124 |
+
super().__init__()
|
125 |
+
self.models = torch.nn.ModuleDict()
|
126 |
+
|
127 |
+
for key, model in kw_models.items():
|
128 |
+
if isinstance(model, list):
|
129 |
+
model = torch.nn.ModuleList(model)
|
130 |
+
assert isinstance(
|
131 |
+
model, torch.nn.Module
|
132 |
+
), f"model must be an instance of torch.nn.Module, but got {key} is {type(model)}"
|
133 |
+
self.models.update(torch.nn.ModuleDict({key: model}))
|
134 |
+
|
135 |
+
def get_models(self):
|
136 |
+
return self.models
|
137 |
+
|
138 |
+
ds_model = DeepSpeedWrapper(**models)
|
139 |
+
return ds_model
|