File size: 26,474 Bytes
b5b5498 1b71ca0 b5b5498 27fa720 b5b5498 42a3e6d b5b5498 27fa720 b5b5498 27fa720 b5b5498 27fa720 b5b5498 27fa720 b5b5498 27fa720 b5b5498 27fa720 b5b5498 27fa720 b5b5498 27fa720 b5b5498 27fa720 b5b5498 27fa720 b5b5498 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 |
import re
import argparse
import json
import time
import copy
import traceback
import random
import requests
import numpy as np
import language_evaluation
from multiprocessing import Pool
import openai
from huggingface_hub import HfApi, hf_hub_download
import ast
USE_INTERNAL = True
GROUND_TRUTH = "ground_truth/drivelm_val.json"
FORMAT = "json"
# Deafult traj_L2 error
MAXIMUM_L2_Error = 100
"""Error handling code"""
TEAM_MESSAGE_TEMPLATE = "The team name in your submission is [<TEAM_NAME>].\n"
def update_teamname_to_submission_comment(params, team_name):
hfapi = HfApi()
team_info_in_repo = "submission_info/{}.json".format(params.team_id)
team_info_file = hf_hub_download(
repo_id=params.competition_id,
filename=team_info_in_repo,
token=params.token,
repo_type="dataset",
)
team_info = json.load(open(team_info_file, "r"))
for sub_info in team_info["submissions"]:
if sub_info["submission_id"] == params.submission_id:
sub_info["submission_comment"] = TEAM_MESSAGE_TEMPLATE.replace("<TEAM_NAME>", team_name) + sub_info["submission_comment"]
break
with open(team_info_file, "w") as f:
json.dump(team_info, f, indent=4)
hfapi.upload_file(
path_or_fileobj=team_info_file,
path_in_repo=team_info_in_repo,
repo_id=params.competition_id,
repo_type="dataset",
token=params.token,
)
return
ERROR_MESSAGE_TEMPLATE = "[ERROR] [<ERROR_MESSAGE>]\n"
def update_error_message_to_submission_comment(params, error_message):
hfapi = HfApi()
team_info_in_repo = "submission_info/{}.json".format(params.team_id)
team_info_file = hf_hub_download(
repo_id=params.competition_id,
filename=team_info_in_repo,
token=params.token,
repo_type="dataset",
)
team_info = json.load(open(team_info_file, "r"))
for sub_info in team_info["submissions"]:
if sub_info["submission_id"] == params.submission_id:
sub_info["submission_comment"] = ERROR_MESSAGE_TEMPLATE.replace("[<ERROR_MESSAGE>]", error_message) + sub_info["submission_comment"]
break
with open(team_info_file, "w") as f:
json.dump(team_info, f, indent=4)
hfapi.upload_file(
path_or_fileobj=team_info_file,
path_in_repo=team_info_in_repo,
repo_id=params.competition_id,
repo_type="dataset",
token=params.token,
)
return
def exception_handler_decorator(func):
def wrapper(params):
try:
return func(params)
except Exception as e:
hfapi = HfApi()
team_info_in_repo = "submission_info/{}.json".format(params.team_id)
team_info_file = hf_hub_download(
repo_id=params.competition_id,
filename=team_info_in_repo,
token=params.token,
repo_type="dataset",
)
team_info = json.load(open(team_info_file, "r"))
for sub_info in team_info["submissions"]:
if sub_info["submission_id"] == params.submission_id:
sub_info["error_message"] = str(e) + '\n\n' + traceback.format_exc()
break
with open(team_info_file.replace('.json', '_error.json'), "w") as f:
json.dump(sub_info, f, indent=4)
hfapi.upload_file(
path_or_fileobj=team_info_file.replace('.json', '_error.json'),
path_in_repo=f'submission_error/{params.submission_id}.json',
repo_id=params.competition_id,
repo_type="dataset",
token=params.token,
)
raise e
return wrapper
"""DriveLM Specific"""
# API_KEYS = ["sk-NuE4a50TeXtSPVom099111B600C9435eAdCc445fE3FfFa72"] # need openai.api_base = "https://api.chatweb.plus/v1"
API_KEYS = [
# "sk-proj-s8DmEUz3c0fMsXNvoK2eT3BlbkFJgxqZ2ZN35VfGbf6pz32K", # batch 7
# "sk-proj-WJA3qO4cTryRDhOEpB4QT3BlbkFJTxgvO3xyMOEoWsga3iIj",
# "sk-proj-UXLnPZ54GqsFt8PUSUcfT3BlbkFJbcBmGdsnkUxKv9DMUUCv",
# "sk-proj-STphQ681iiXwW3ooY0sKT3BlbkFJYlqJFZr3lVqRNVdFh87a",
# "sk-proj-TnvZchmH06y3cKzixZ8XT3BlbkFJfMog1yTeQn1sX1kgLDw7",
# "sk-proj-GBuvgZ7HbVcrgXWMx7poT3BlbkFJBPq7Wjl3DC7WCizEgO1y",
# "sk-proj-iNV3Na6hlyFAVcDRAasiT3BlbkFJJavS6Od5RdDFyefuBRwq", # batch 8
# "sk-proj-DKvaprWQ8QSuV3Dd2LUmT3BlbkFJueAfFMUp1LZOeRoes1vD",
# "sk-proj-HHziJI12Spjjj0UeFc4ET3BlbkFJ9DjK4XKuLtBPCj88kMsq",
# "sk-proj-zImCrO7m5gjswwZhbMpOT3BlbkFJthf6TsqCiphXB4DtQxUG",
# "sk-proj-KWKBI0kUMINMetoYwJWST3BlbkFJ3EdKYkLUkm4tzXcV8dbl",
# "sk-proj-kv1aJThY7iupJ6qXdZpXT3BlbkFJSVIN1D2oJk7n60DXKngX",
# "sk-proj-wtVxu5lh9rKbl1FUBXwOT3BlbkFJ2mF0RsqOEzfUpaKGVQ45",
# "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", # batch 9
# "sk-wrFnTE0zlU1UngGmE8Dd1eC4880142Cd99A3CeB33eAe8d1e", # need openai.api_base = "https://api.claudeshop.top/"
# "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",
# "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",
# "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",
# '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',
# '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',
# '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',
# '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',
######################### new api key ##############################
'sk-wrFnTE0zlU1UngGmE8Dd1eC4880142Cd99A3CeB33eAe8d1e',
'sk-DLon77JND74AgaCLKZoS0kZAdmUb3jU3oTzSvHfclS40flhS',
'sk-sXnrftCjtiduDy40ecIT3h0Xu0H8YM8dWATM06TLH7Lt0zpv',
]
class KeyManager:
def __init__(self):
self.keys = API_KEYS
# Initialize all keys as "unused"
self.status = ['unused' for _ in API_KEYS]
def get_key(self):
# Try to find an unused key first
unused_indices = [i for i, s in enumerate(self.status) if s == 'unused']
if unused_indices:
index = random.choice(unused_indices)
self.status[index] = 'using'
return self.keys[index], index
print("No unused key available! Assigning a key currently in use.")
# If no unused key is available, try a 'using' key
using_indices = [i for i, s in enumerate(self.status) if s == 'using']
if using_indices:
index = random.choice(using_indices)
return self.keys[index], index
# No suitable key is left
raise Exception("No available key left!")
def set_fail(self, index):
if 0 <= index < len(self.keys):
self.status[index] = 'fail'
else:
raise Exception("Error: Index out of bounds")
def __str__(self):
return "\n".join(f"{self.keys[i]}: {self.status[i]}" for i in range(len(self.keys)))
key_manager = KeyManager()
class GPTEvaluation:
def __init__(self, api_keys):
self.api_keys = api_keys
self._key_use = random.randint(0, len(self.api_keys)-1)
self._switch_key()
def _switch_key(self):
self._key_use = (self._key_use + 1) % len(self.api_keys)
openai.api_key = self.api_keys[self._key_use]
print("Switched to key: ", self._key_use)
# openai.api_base = "https://api.claudeshop.top/"
def call_chatgpt(self, chatgpt_messages, max_tokens=40, model="gpt-3.5-turbo"): # default model: gpt-3.5-turbo
response = openai.chat.completions.create(
model=model, messages=chatgpt_messages, temperature=0.6, max_tokens=max_tokens
)
reply = response.choices[0].message.content
total_tokens = response.usage.total_tokens
return reply, total_tokens
def prepare_chatgpt_message(self, prompt):
system_message = "an evaluator who rates my answer based on the correct answer"
messages = [{"role": "system", "content": system_message}]
messages.append({"role": "user", "content": "{}".format(prompt)})
return messages
def forward(self, data):
answer, GT = data
prompts = "Rate my answer based on the correct answer out of 100, with higher scores indicating that the answer is closer to the correct answer, and you should be accurate to single digits like 62, 78, 41,etc. Output the number only, no need for explanation. "
prompts = prompts + "This is the correct answer: " + GT + ". This is my answer: " + answer
output = ""
messages = self.prepare_chatgpt_message(prompts)
reply, total_tokens = self.call_chatgpt(messages, max_tokens=3000)
time.sleep(2) # default 1
output += reply
output += "\n\n"
output = output[:-2]
return output
class GPTEvaluationInternal:
def __init__(self):
self.api_key, self.key_idx = key_manager.get_key()
print("Initial key id: ", self.key_idx)
self.query_count = 0
# self.client = openai.Client(api_key=api_key)
self.prompts_p1 = ["Rate my answer based on the correct answer out of 100, ", "Please score my answer out of 100 compared with correct answer, "]
self.prompts_p2 = ["with higher scores indicating that the answer is closer to the correct answer, ", "higher is better, ", ""]
self.prompts_p3 = ["you should be accurate to single digits like 62, 78, 41, etc. ", "be accurate to integer value. ", ""]
self.prompts_p4 = ["Output the number only, no need for explanation. ", "Please respond the number only. ", "Please answer the score only. "]
def call_chatgpt(self, chatgpt_messages, max_tokens=40, model="gpt-3.5-turbo"): # default model: gpt-3.5-turbo
while True:
try:
# old
# client = openai.Client(api_key=self.api_key)
# response = client.chat.completions.create(
# model=model, messages=chatgpt_messages, temperature=0.6, max_tokens=max_tokens
# )
# new
Baseurl = "https://api.claudeshop.top"
url = Baseurl + "/v1/chat/completions"
headers = {
'Accept': 'application/json',
'Authorization': f'Bearer {self.api_key}',
'User-Agent': 'Apifox/1.0.0 (https://apifox.com)',
'Content-Type': 'application/json'
}
payload = json.dumps({
"model": model,
"messages": [
{
"role": "system",
"content": chatgpt_messages[0]["content"]
},
{
"role": "user",
"content": chatgpt_messages[1]["content"]
}
],
"temperature": 0.6,
"max_tokens": max_tokens,
})
response = requests.request("POST", url, headers=headers, data=payload)
content = response.json()
except Exception as e:
print("Failed prompt: ", chatgpt_messages)
print("Key id ", self.key_idx, " fail with error after querying ", self.query_count, " times: ", e)
print(type(e))
if ("We've encountered an issue with repetitive patterns in your prompt." in str(e)):
return '00', 0
key_manager.set_fail(self.key_idx)
self.api_key, self.key_idx = key_manager.get_key()
self.query_count = 0
continue
break
self.query_count += 1
# old
# reply = response.choices[0].message.content
# total_tokens = response.usage.total_tokens
# new
print(content)
reply = content['choices'][0]['message']['content']
total_tokens = content['usage']['total_tokens']
return reply, total_tokens
def prepare_chatgpt_message(self, prompt):
system_message = "an evaluator who rates my answer based on the correct answer"
messages = [{"role": "system", "content": system_message}]
messages.append({"role": "user", "content": "{}".format(prompt)})
return messages
def forward(self, chunk_data):
# self.client = client
outputs = []
for data in chunk_data:
answer, GT = data
# prompts = random.choice(self.prompts_p1) + random.choice(self.prompts_p2) + random.choice(self.prompts_p3) + random.choice(self.prompts_p4)
prompts = "Rate my answer based on the correct answer out of 100, with higher scores indicating that the answer is closer to the correct answer, and you should be accurate to single digits like 62, 78, 41,etc. Output the number only, no need for explanation. "
prompts = prompts + "This is the correct answer: " + GT + ". This is my answer: " + answer
output = ""
messages = self.prepare_chatgpt_message(prompts)
reply, total_tokens = self.call_chatgpt(messages, max_tokens=3000)
time.sleep(0.5) # default 0.25
output += reply
output += "\n\n"
output = output[:-2]
outputs.append(output)
return outputs
class evaluation_suit():
def __init__(self):
self.language_eval = language_evaluation.CocoEvaluator(coco_types=["BLEU", "ROUGE_L", "CIDEr"])
self.num_process = 3 # default: 32
if USE_INTERNAL:
self.chatgpt_eval = []
for i in range(self.num_process):
self.chatgpt_eval.append(GPTEvaluationInternal())
else:
# API_KEYS = API_KEYS_FAST
# API_KEYS.extend(API_KEYS_SLOW)
self.chatgpt_eval = GPTEvaluation(API_KEYS)
self.GPT = []
self.accuracy = {"answer": [], "GT": []}
self.language = {"answer": [], "GT": []}
self.language_score_keys = []
self.match = {"match": {"answer": [], "GT": []}, "GPT": []}
self.traj_L2 = {"answer": [], "GT": []}
def eval_acc(self):
scores = []
for i in range(len(self.accuracy["answer"])):
answer = self.accuracy["answer"][i]
GT = self.accuracy["GT"][i]
if answer == GT:
scores.append(1.0)
else:
scores.append(0.0)
scores = sum(scores) / len(scores)
return scores
def extract_traj_from_response(self, response):
response = response.split('[', 1)[1].split(']')[0]
response = response.split(', ')
coordinates = [list(ast.literal_eval(s)) for s in response]
# convert to tensor
coordinates = np.array(coordinates) # 6 x 2
return coordinates # 6 x 2
def eval_traj_L2(self):
ADEs = []
for i in range(len(self.traj_L2["answer"])):
answer = self.traj_L2["answer"][i]
GT = self.traj_L2["GT"][i]
try:
# Compute the ADE of the traj
answer_traj = self.extract_traj_from_response(answer)
GT_traj = self.extract_traj_from_response(GT)
# Compute the L2 betwween the two trajectories
ADE = np.linalg.norm(answer_traj - GT_traj)
except Exception as e:
print(answer)
print(GT)
print("Can not extract traj from the response. Return default MAXIMUM_L2_Error.")
ADE = MAXIMUM_L2_Error
ADEs.append(ADE)
mean_ADE = sum(ADEs) / len(ADEs)
return mean_ADE
def eval_long_tail_behavior_planning_gpt_score(self, data):
# with Pool(32) as p: # Change the number based on your CPU cores
# scores = p.map(self.chatgpt_eval.forward, data)
scores = []
for item in data:
answer, GT = item
# Remove the traj from the answer and GT
answer = answer.split(", and its 3-second future trajectory")[0]
GT = GT.split("The autonomous vehicle's 3-second future trajectory is")[0]
item = (answer, GT)
#score = self.chatgpt_eval.forward(item)
score = 50
scores.append(float(score))
#scores = list(map(float, scores))
scores = sum(scores) / len(scores)
return scores
def eval_chatGPT(self, data):
remain_attempts = len(self.chatgpt_eval.api_keys)
while remain_attempts > 0:
try:
with Pool(3) as p: # Change the number based on your CPU cores
scores = p.map(self.chatgpt_eval.forward, data)
scores = list(map(float, scores))
except Exception as e:
print("This key fail with error: ", e)
remain_attempts -= 1
if remain_attempts == 0:
print("All keys failed!")
raise e
else:
self.chatgpt_eval._switch_key()
continue
break
scores = sum(scores) / len(scores)
return scores
def apply_function(self, task):
func, chunk = task
return func(chunk)
def eval_chatGPT_internal(self, data):
chunk_size = len(data) // self.num_process
tasks = [(self.chatgpt_eval[i].forward, data[i * chunk_size : (i+1) * chunk_size]) for i in range(self.num_process)]
with Pool(self.num_process) as p:
scores_chunked = p.map(self.apply_function, tasks)
scores = [score for chunk in scores_chunked for score in chunk]
scores = list(map(float, scores))
scores = sum(scores) / len(scores)
return scores
def eval_language(self):
"""
return the dict evaluation results
"""
answer = self.language["answer"]
GT = self.language["GT"]
results_gen = self.language_eval.run_evaluation(answer, GT)
results_gen_dict = {
f"language/{k}": v for k, v in results_gen.items()
}
self.language_score_keys = list(results_gen_dict.keys())
return results_gen_dict
def eval_match(self):
outs1 = []
for i in range(len(self.match["match"]["answer"])):
answer = self.match["match"]["answer"][i]
GT = self.match["match"]["GT"][i]
_, F1_score = self.match_result(answer, GT)
outs1.append(F1_score * 100)
outs1 = sum(outs1) / len(outs1)
if USE_INTERNAL:
outs2 = self.eval_chatGPT_internal(self.match["GPT"])
else:
outs2 = self.eval_chatGPT(self.match["GPT"])
scores = (outs1 + outs2) / 2.0
return scores
def eval_graph(self, question):
# check if answer in self.graph
question_nums = re.findall(r'\d+\.\d+', question)
question_nums = np.array([list(map(float, x.split()))[0] for x in question_nums]).reshape(-1, 2)
question_nums = [list(i) for i in question_nums]
for q in question_nums:
if q not in self.graph:
return False
return True
def match_result(self, answer, GT):
"""
answer: [[1.,2.], [2., 3.]]
GT: [[1., 2.], [2., 3.]]
"""
answer_nums = re.findall(r'\d+\.\d+', answer)
GT_nums = re.findall(r'\d+\.\d+', GT)
# transform string into float
if len(answer_nums) % 2 != 0:
answer_nums = answer_nums[:-1]
answer_nums = np.array([list(map(float, x.split()))[0] for x in answer_nums]).reshape(-1, 2)
GT_nums = np.array([list(map(float, x.split()))[0] for x in GT_nums]).reshape(-1, 2)
length = len(GT_nums)
matched_out = []
true_positives = 0
false_positives = 0
false_negatives = 0
for pred in answer_nums:
closest_distance = float('inf')
closest_gt = None
closest_id = None
for i, gt in enumerate(GT_nums):
distance = np.sum(np.abs(pred - gt))
if distance < closest_distance:
closest_distance = distance
closest_gt = gt
closest_id = i
if closest_distance < 16:
true_positives += 1
matched_out.append(closest_gt)
GT_nums = np.delete(GT_nums, closest_id, axis=0)
else:
false_positives += 1
false_negatives = length - true_positives
precision = true_positives / (true_positives + false_positives + 1e-8)
recall = true_positives / (true_positives + false_negatives + 1e-8)
F1 = 2 * precision * recall / (precision + recall + 1e-8)
return matched_out, F1
def set_graph(self, answer, GT):
self.graph, _ = self.match_result(answer, GT)
self.graph = [list(i) for i in self.graph]
def forward(self, tag, answer, GT):
if 0 in tag:
self.accuracy["answer"].append(answer)
self.accuracy["GT"].append(GT)
if 1 in tag:
self.GPT.append((answer, GT))
if 2 in tag:
self.language["GT"].append(GT)
self.language["answer"].append(answer)
if 3 in tag:
self.match["match"]["GT"].append(GT)
self.match["match"]["answer"].append(answer)
self.match["GPT"].append((answer, GT))
if 4 in tag:
self.traj_L2["GT"].append(GT)
self.traj_L2["answer"].append(answer)
def evaluation(self):
print("evaluation start!")
scores = {}
# #scores["accuracy"] = self.eval_acc()
# print("USE_INTERNAL: ", USE_INTERNAL)
# if USE_INTERNAL:
# scores["chatgpt"] = self.eval_chatGPT_internal(self.GPT)
# else:
# scores["chatgpt"] = self.eval_chatGPT(self.GPT)
# scores.update(self.eval_language())
# scores["match"] = self.eval_match()
scores["traj_l2"] = self.eval_traj_L2()
scores["chatgpt_longtail_behavior"] = self.eval_long_tail_behavior_planning_gpt_score(self.GPT)
return scores
@exception_handler_decorator
def compute(params, quiet=True):
try:
print("Team name is: ", params.team_id)
# if "29857a24" in params.team_id:
# global USE_INTERNAL
# USE_INTERNAL = True
submission_filename = "submissions/{}-{}.{}".format(params.team_id, params.submission_id, FORMAT)
print(submission_filename)
submission = hf_hub_download(
repo_id=params.competition_id,
filename=submission_filename,
token=params.token,
repo_type="dataset",
)
except Exception as e:
error_message = "submission.json not found in the repository, or it cannot be loaded."
update_error_message_to_submission_comment(params, error_message)
raise e
with open(submission, 'r') as f :#, \
pred_file = json.load(f)
team_name = pred_file.get('team', None)
pred_file = pred_file["results"]
pred_file = {pred_file[i]["id"]: pred_file[i] for i in range(len(pred_file))}
if team_name is not None:
update_teamname_to_submission_comment(params, team_name)
else:
update_error_message_to_submission_comment(params, "Team name not found in the submission file.")
ground_truth = hf_hub_download(
repo_id=params.competition_id,
filename=GROUND_TRUTH,
token=params.token,
repo_type="dataset",
)
with open(ground_truth, 'r') as f:
test_file = json.load(f)
print("Submission and Ground Truth downloaded.")
print("Evaluating...")
try:
evaluation = evaluation_suit()
output = {"chatgpt": [], "traj_l2": []}
for scene_id in test_file.keys():
scene_data = test_file[scene_id]['key_frames']
for frame_id in scene_data.keys():
frame_data_qa = scene_data[frame_id]['QA']
if 'long_tail_behavior_planning' not in frame_data_qa:
continue
for i, qa in enumerate(frame_data_qa["long_tail_behavior_planning"]):
question = qa['Q']
GT = qa['A']
tag = [1,4]
idx = scene_id + "_" + frame_id + "_lt_" + str(i)
predict = pred_file[idx]["answer"]
evaluation.forward(tag, predict, GT)
output = evaluation.evaluation()
print("chatgpt score: ", output["chatgpt_longtail_behavior"])
print("traj score: ", output["traj_l2"])
for key in evaluation.language_score_keys:
print(key, output[key])
# Normalize to 0-1 and combine the scores: chatgpt, language, match, accuracy
scores = []
weights = [0.4, 0.2, 0.2, 0.2]
# chatGPT
score = output["chatgpt_longtail_behavior"] / 100.
scores.append(score)
# language
output["final_score"] = score
except Exception as e:
error_message = "Evaluation failed. " + str(e)
update_error_message_to_submission_comment(params, error_message)
raise e
evaluation = {
"public_score": output,
"private_score": output
}
return evaluation
|