File size: 26,474 Bytes
b5b5498
 
 
 
 
 
 
 
 
 
 
 
 
1b71ca0
b5b5498
 
 
 
 
 
27fa720
 
 
b5b5498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42a3e6d
b5b5498
 
 
 
 
 
 
 
 
 
 
 
 
 
27fa720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5b5498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27fa720
 
 
b5b5498
 
 
 
 
27fa720
 
 
 
 
 
 
 
 
 
b5b5498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27fa720
b5b5498
 
 
 
 
27fa720
 
 
b5b5498
 
27fa720
 
b5b5498
27fa720
b5b5498
 
27fa720
 
b5b5498
 
 
 
 
 
 
 
27fa720
b5b5498
 
 
 
27fa720
b5b5498
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
import re
import argparse
import json
import time
import copy
import traceback
import random
import requests
import numpy as np
import language_evaluation
from multiprocessing import Pool
import openai
from huggingface_hub import HfApi, hf_hub_download
import ast

USE_INTERNAL = True

GROUND_TRUTH = "ground_truth/drivelm_val.json"
FORMAT = "json"

# Deafult traj_L2 error
MAXIMUM_L2_Error = 100

"""Error handling code"""
TEAM_MESSAGE_TEMPLATE = "The team name in your submission is [<TEAM_NAME>].\n"
def update_teamname_to_submission_comment(params, team_name):
    hfapi = HfApi()
    team_info_in_repo = "submission_info/{}.json".format(params.team_id)
    team_info_file = hf_hub_download(
        repo_id=params.competition_id,
        filename=team_info_in_repo,
        token=params.token,
        repo_type="dataset",
    )
    team_info = json.load(open(team_info_file, "r"))

    for sub_info in team_info["submissions"]:
        if sub_info["submission_id"] == params.submission_id:
            sub_info["submission_comment"] = TEAM_MESSAGE_TEMPLATE.replace("<TEAM_NAME>", team_name) + sub_info["submission_comment"]
            break

    with open(team_info_file, "w") as f:
        json.dump(team_info, f, indent=4)

    hfapi.upload_file(
        path_or_fileobj=team_info_file,
        path_in_repo=team_info_in_repo,
        repo_id=params.competition_id,
        repo_type="dataset",
        token=params.token,
    )
    return

ERROR_MESSAGE_TEMPLATE = "[ERROR] [<ERROR_MESSAGE>]\n"
def update_error_message_to_submission_comment(params, error_message):
    hfapi = HfApi()
    team_info_in_repo = "submission_info/{}.json".format(params.team_id)
    team_info_file = hf_hub_download(
        repo_id=params.competition_id,
        filename=team_info_in_repo,
        token=params.token,
        repo_type="dataset",
    )
    team_info = json.load(open(team_info_file, "r"))

    for sub_info in team_info["submissions"]:
        if sub_info["submission_id"] == params.submission_id:
            sub_info["submission_comment"] = ERROR_MESSAGE_TEMPLATE.replace("[<ERROR_MESSAGE>]", error_message) + sub_info["submission_comment"]
            break

    with open(team_info_file, "w") as f:
        json.dump(team_info, f, indent=4)

    hfapi.upload_file(
        path_or_fileobj=team_info_file,
        path_in_repo=team_info_in_repo,
        repo_id=params.competition_id,
        repo_type="dataset",
        token=params.token,
    )
    return

def exception_handler_decorator(func):
    def wrapper(params):
        try:
            return func(params)
        except Exception as e:
            hfapi = HfApi()
            team_info_in_repo = "submission_info/{}.json".format(params.team_id)
            team_info_file = hf_hub_download(
                repo_id=params.competition_id,
                filename=team_info_in_repo,
                token=params.token,
                repo_type="dataset",
            )
            team_info = json.load(open(team_info_file, "r"))
            
            for sub_info in team_info["submissions"]:
                if sub_info["submission_id"] == params.submission_id:
                    sub_info["error_message"] = str(e) + '\n\n' + traceback.format_exc()
                    break

            with open(team_info_file.replace('.json', '_error.json'), "w") as f:
                json.dump(sub_info, f, indent=4)

            hfapi.upload_file(
                path_or_fileobj=team_info_file.replace('.json', '_error.json'),
                path_in_repo=f'submission_error/{params.submission_id}.json',
                repo_id=params.competition_id,
                repo_type="dataset",
                token=params.token,
            )
            raise e
    return wrapper

"""DriveLM Specific"""
# API_KEYS = ["sk-NuE4a50TeXtSPVom099111B600C9435eAdCc445fE3FfFa72"]  # need openai.api_base = "https://api.chatweb.plus/v1"

API_KEYS = [
            # "sk-proj-s8DmEUz3c0fMsXNvoK2eT3BlbkFJgxqZ2ZN35VfGbf6pz32K", # batch 7
            # "sk-proj-WJA3qO4cTryRDhOEpB4QT3BlbkFJTxgvO3xyMOEoWsga3iIj",
            # "sk-proj-UXLnPZ54GqsFt8PUSUcfT3BlbkFJbcBmGdsnkUxKv9DMUUCv",
            # "sk-proj-STphQ681iiXwW3ooY0sKT3BlbkFJYlqJFZr3lVqRNVdFh87a",
            # "sk-proj-TnvZchmH06y3cKzixZ8XT3BlbkFJfMog1yTeQn1sX1kgLDw7",
            # "sk-proj-GBuvgZ7HbVcrgXWMx7poT3BlbkFJBPq7Wjl3DC7WCizEgO1y",
            # "sk-proj-iNV3Na6hlyFAVcDRAasiT3BlbkFJJavS6Od5RdDFyefuBRwq", # batch 8
            # "sk-proj-DKvaprWQ8QSuV3Dd2LUmT3BlbkFJueAfFMUp1LZOeRoes1vD", 
            # "sk-proj-HHziJI12Spjjj0UeFc4ET3BlbkFJ9DjK4XKuLtBPCj88kMsq",
            # "sk-proj-zImCrO7m5gjswwZhbMpOT3BlbkFJthf6TsqCiphXB4DtQxUG",
            # "sk-proj-KWKBI0kUMINMetoYwJWST3BlbkFJ3EdKYkLUkm4tzXcV8dbl",
            # "sk-proj-kv1aJThY7iupJ6qXdZpXT3BlbkFJSVIN1D2oJk7n60DXKngX",
            # "sk-proj-wtVxu5lh9rKbl1FUBXwOT3BlbkFJ2mF0RsqOEzfUpaKGVQ45",
            # "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", # batch 9
            # "sk-wrFnTE0zlU1UngGmE8Dd1eC4880142Cd99A3CeB33eAe8d1e", # need openai.api_base = "https://api.claudeshop.top/"
            # "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",
            # "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",
            # "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",
            # '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',
            # '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',
            # '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',
            # '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',
            ######################### new api key ##############################
            'sk-wrFnTE0zlU1UngGmE8Dd1eC4880142Cd99A3CeB33eAe8d1e', 
            'sk-DLon77JND74AgaCLKZoS0kZAdmUb3jU3oTzSvHfclS40flhS', 
            'sk-sXnrftCjtiduDy40ecIT3h0Xu0H8YM8dWATM06TLH7Lt0zpv', 
            ]

class KeyManager:
    def __init__(self):
        self.keys = API_KEYS
        # Initialize all keys as "unused"
        self.status = ['unused' for _ in API_KEYS]

    def get_key(self):
        # Try to find an unused key first
        unused_indices = [i for i, s in enumerate(self.status) if s == 'unused']
        if unused_indices:
            index = random.choice(unused_indices)
            self.status[index] = 'using'
            return self.keys[index], index
        
        print("No unused key available! Assigning a key currently in use.")
        # If no unused key is available, try a 'using' key
        using_indices = [i for i, s in enumerate(self.status) if s == 'using']
        if using_indices:
            index = random.choice(using_indices)
            return self.keys[index], index

        # No suitable key is left
        raise Exception("No available key left!")

    def set_fail(self, index):
        if 0 <= index < len(self.keys):
            self.status[index] = 'fail'
        else:
            raise Exception("Error: Index out of bounds")

    def __str__(self):
        return "\n".join(f"{self.keys[i]}: {self.status[i]}" for i in range(len(self.keys)))

key_manager = KeyManager()


class GPTEvaluation:
    def __init__(self, api_keys):
        self.api_keys = api_keys
        self._key_use = random.randint(0, len(self.api_keys)-1)
        self._switch_key()
    
    def _switch_key(self):
        self._key_use = (self._key_use + 1) % len(self.api_keys)
        openai.api_key = self.api_keys[self._key_use]
        print("Switched to key: ", self._key_use)
        # openai.api_base = "https://api.claudeshop.top/"

    def call_chatgpt(self, chatgpt_messages, max_tokens=40, model="gpt-3.5-turbo"): # default model: gpt-3.5-turbo
        response = openai.chat.completions.create(
            model=model, messages=chatgpt_messages, temperature=0.6, max_tokens=max_tokens
        )
        reply = response.choices[0].message.content
        total_tokens = response.usage.total_tokens
        return reply, total_tokens
    
    def prepare_chatgpt_message(self, prompt):
        system_message = "an evaluator who rates my answer based on the correct answer"
        messages = [{"role": "system", "content": system_message}]
        messages.append({"role": "user", "content": "{}".format(prompt)})
        
        return messages
    
    def forward(self, data):
        answer, GT = data
        prompts = "Rate my answer based on the correct answer out of 100, with higher scores indicating that the answer is closer to the correct answer, and you should be accurate to single digits like 62, 78, 41,etc. Output the number only, no need for explanation. "
        prompts = prompts + "This is the correct answer: " + GT + ". This is my answer: " + answer
        
        output = ""
        messages = self.prepare_chatgpt_message(prompts)
        reply, total_tokens = self.call_chatgpt(messages, max_tokens=3000)

        time.sleep(2) # default 1

        output += reply
        output += "\n\n"

        output = output[:-2]

        return output

class GPTEvaluationInternal:
    def __init__(self):
        self.api_key, self.key_idx = key_manager.get_key()
        print("Initial key id: ", self.key_idx)
        self.query_count = 0
        # self.client = openai.Client(api_key=api_key)

        self.prompts_p1 = ["Rate my answer based on the correct answer out of 100, ", "Please score my answer out of 100 compared with correct answer, "]
        self.prompts_p2 = ["with higher scores indicating that the answer is closer to the correct answer, ", "higher is better, ", ""]
        self.prompts_p3 = ["you should be accurate to single digits like 62, 78, 41, etc. ", "be accurate to integer value. ", ""]
        self.prompts_p4 = ["Output the number only, no need for explanation. ", "Please respond the number only. ", "Please answer the score only. "]

    def call_chatgpt(self, chatgpt_messages, max_tokens=40, model="gpt-3.5-turbo"): # default model: gpt-3.5-turbo
        while True:
            try:
                # old
                # client = openai.Client(api_key=self.api_key)
                # response = client.chat.completions.create(
                #     model=model, messages=chatgpt_messages, temperature=0.6, max_tokens=max_tokens
                # )

                # new
                Baseurl = "https://api.claudeshop.top"
                url = Baseurl + "/v1/chat/completions"
                
                headers = {
                'Accept': 'application/json',
                'Authorization': f'Bearer {self.api_key}',
                'User-Agent': 'Apifox/1.0.0 (https://apifox.com)',
                'Content-Type': 'application/json'
                }
                
                payload = json.dumps({
                   "model": model,
                   "messages": [
                      {
                         "role": "system",
                         "content": chatgpt_messages[0]["content"]
                      },
                      {
                         "role": "user",
                         "content": chatgpt_messages[1]["content"]
                      }
                   ], 
                    "temperature": 0.6, 
                    "max_tokens": max_tokens, 
                })
                
                response = requests.request("POST", url, headers=headers, data=payload)
                content = response.json()

            except Exception as e:
                print("Failed prompt: ", chatgpt_messages)
                print("Key id ", self.key_idx, " fail with error after querying ", self.query_count, " times: ", e)
                print(type(e))
                if ("We've encountered an issue with repetitive patterns in your prompt." in str(e)):
                    return '00', 0
                key_manager.set_fail(self.key_idx)
                self.api_key, self.key_idx = key_manager.get_key()
                self.query_count = 0
                continue
            break
        
        self.query_count += 1

        # old
        # reply = response.choices[0].message.content
        # total_tokens = response.usage.total_tokens

        # new
        print(content)
        reply = content['choices'][0]['message']['content']
        total_tokens = content['usage']['total_tokens']
        
        return reply, total_tokens
    
    def prepare_chatgpt_message(self, prompt):
        system_message = "an evaluator who rates my answer based on the correct answer"
        messages = [{"role": "system", "content": system_message}]
        messages.append({"role": "user", "content": "{}".format(prompt)})
        
        return messages
    
    def forward(self, chunk_data):
        # self.client = client
        outputs = []
        for data in chunk_data:
            answer, GT = data
            # prompts = random.choice(self.prompts_p1) + random.choice(self.prompts_p2) + random.choice(self.prompts_p3) + random.choice(self.prompts_p4)
            prompts = "Rate my answer based on the correct answer out of 100, with higher scores indicating that the answer is closer to the correct answer, and you should be accurate to single digits like 62, 78, 41,etc. Output the number only, no need for explanation. "
            prompts = prompts + "This is the correct answer: " + GT + ". This is my answer: " + answer
            
            output = ""
            messages = self.prepare_chatgpt_message(prompts)
            reply, total_tokens = self.call_chatgpt(messages, max_tokens=3000)

            time.sleep(0.5) # default 0.25

            output += reply
            output += "\n\n"

            output = output[:-2]

            outputs.append(output)
        return outputs


class evaluation_suit():
    def __init__(self):
        self.language_eval = language_evaluation.CocoEvaluator(coco_types=["BLEU", "ROUGE_L", "CIDEr"])
        self.num_process = 3 # default: 32

        if USE_INTERNAL:
            self.chatgpt_eval = []
            for i in range(self.num_process):
                self.chatgpt_eval.append(GPTEvaluationInternal())
        else:
            # API_KEYS = API_KEYS_FAST
            # API_KEYS.extend(API_KEYS_SLOW)
            self.chatgpt_eval = GPTEvaluation(API_KEYS)
        self.GPT = []
        self.accuracy = {"answer": [], "GT": []}
        self.language = {"answer": [], "GT": []}
        self.language_score_keys = []
        self.match = {"match": {"answer": [], "GT": []}, "GPT": []}
        self.traj_L2 = {"answer": [], "GT": []}

    def eval_acc(self):
        scores = []
        for i in range(len(self.accuracy["answer"])):
            answer = self.accuracy["answer"][i]
            GT = self.accuracy["GT"][i]
            if answer == GT:
                scores.append(1.0)
            else:
                scores.append(0.0)

        scores = sum(scores) / len(scores)
        return scores
    
    def extract_traj_from_response(self, response):
        response = response.split('[', 1)[1].split(']')[0]
        response = response.split(', ')
        coordinates = [list(ast.literal_eval(s)) for s in response]
        # convert to tensor
        coordinates = np.array(coordinates) # 6 x 2
        return coordinates # 6 x 2
    
    def eval_traj_L2(self):
        ADEs = []
        for i in range(len(self.traj_L2["answer"])):
            answer = self.traj_L2["answer"][i]
            GT = self.traj_L2["GT"][i]
            try:
                # Compute the ADE of the traj
                answer_traj = self.extract_traj_from_response(answer)
                GT_traj = self.extract_traj_from_response(GT)
                # Compute the L2 betwween the two trajectories
                ADE = np.linalg.norm(answer_traj - GT_traj)
            except Exception as e:
                print(answer)
                print(GT)
                print("Can not extract traj from the response. Return default MAXIMUM_L2_Error.")
                ADE = MAXIMUM_L2_Error
            ADEs.append(ADE)
        mean_ADE = sum(ADEs) / len(ADEs)
        return mean_ADE
    
    def eval_long_tail_behavior_planning_gpt_score(self, data):
        # with Pool(32) as p:  # Change the number based on your CPU cores
        #     scores = p.map(self.chatgpt_eval.forward, data)
        scores = []
        for item in data:
            answer, GT = item
            # Remove the traj from the answer and GT
            answer = answer.split(", and its 3-second future trajectory")[0]
            GT = GT.split("The autonomous vehicle's 3-second future trajectory is")[0]
            item = (answer, GT)
            #score = self.chatgpt_eval.forward(item)
            score = 50
            scores.append(float(score))
        #scores = list(map(float, scores))
        scores = sum(scores) / len(scores)
        return scores
    
    def eval_chatGPT(self, data):
        remain_attempts = len(self.chatgpt_eval.api_keys)
        while remain_attempts > 0:
            try:
                with Pool(3) as p:  # Change the number based on your CPU cores 
                    scores = p.map(self.chatgpt_eval.forward, data)
                scores = list(map(float, scores))
            except Exception as e:
                print("This key fail with error: ", e)
                remain_attempts -= 1
                if remain_attempts == 0:
                    print("All keys failed!")
                    raise e
                else:
                    self.chatgpt_eval._switch_key()
                    continue
            break
        
        scores = sum(scores) / len(scores)
        return scores
    
    def apply_function(self, task):
        func, chunk = task
        return func(chunk)

    def eval_chatGPT_internal(self, data):

        chunk_size = len(data) // self.num_process
        tasks = [(self.chatgpt_eval[i].forward, data[i * chunk_size : (i+1) * chunk_size]) for i in range(self.num_process)]

        with Pool(self.num_process) as p:
            scores_chunked = p.map(self.apply_function, tasks)
        scores = [score for chunk in scores_chunked for score in chunk]
        scores = list(map(float, scores))

        scores = sum(scores) / len(scores)
        return scores

    def eval_language(self):
        """
        return the dict evaluation results
        """
        answer = self.language["answer"]
        GT = self.language["GT"]
        results_gen = self.language_eval.run_evaluation(answer, GT)
        results_gen_dict = {
            f"language/{k}": v for k, v in results_gen.items()
        }
        self.language_score_keys = list(results_gen_dict.keys())
        return results_gen_dict

    def eval_match(self):
        outs1 = []
        for i in range(len(self.match["match"]["answer"])):
            answer = self.match["match"]["answer"][i]
            GT = self.match["match"]["GT"][i]
            _, F1_score = self.match_result(answer, GT)
            outs1.append(F1_score * 100)
        
        outs1 = sum(outs1) / len(outs1)
        if USE_INTERNAL:
            outs2 = self.eval_chatGPT_internal(self.match["GPT"])
        else:
            outs2 = self.eval_chatGPT(self.match["GPT"])
        scores = (outs1 + outs2) / 2.0
        return scores

    def eval_graph(self, question):
        # check if answer in self.graph  
        question_nums = re.findall(r'\d+\.\d+', question)
        question_nums = np.array([list(map(float, x.split()))[0] for x in question_nums]).reshape(-1, 2)
        question_nums = [list(i) for i in question_nums]
        for q in question_nums:
            if q not in self.graph:
                return False
        return True

    def match_result(self, answer, GT):
        """
        answer: [[1.,2.], [2., 3.]]
        GT: [[1., 2.], [2., 3.]]
        """
        answer_nums = re.findall(r'\d+\.\d+', answer)
        GT_nums = re.findall(r'\d+\.\d+', GT)
        # transform string into float
        if len(answer_nums) % 2 != 0:
            answer_nums = answer_nums[:-1]
        answer_nums = np.array([list(map(float, x.split()))[0] for x in answer_nums]).reshape(-1, 2)
        GT_nums = np.array([list(map(float, x.split()))[0] for x in GT_nums]).reshape(-1, 2)
        length = len(GT_nums)

        matched_out = []
        true_positives = 0
        false_positives = 0
        false_negatives = 0
        for pred in answer_nums:
            closest_distance = float('inf')
            closest_gt = None
            closest_id = None
            for i, gt in enumerate(GT_nums):
                distance = np.sum(np.abs(pred - gt))
                if distance < closest_distance:
                    closest_distance = distance
                    closest_gt = gt
                    closest_id = i

            if closest_distance < 16:
                true_positives += 1
                matched_out.append(closest_gt)   
                GT_nums = np.delete(GT_nums, closest_id, axis=0)
            else:
                false_positives += 1

        false_negatives = length - true_positives
        precision = true_positives / (true_positives + false_positives + 1e-8)
        recall = true_positives / (true_positives + false_negatives + 1e-8)
        F1 = 2 * precision * recall / (precision + recall + 1e-8)

        return matched_out, F1

    def set_graph(self, answer, GT):
        self.graph, _ = self.match_result(answer, GT)
        self.graph = [list(i) for i in self.graph]

    def forward(self, tag, answer, GT):
        if 0 in tag:
            self.accuracy["answer"].append(answer)
            self.accuracy["GT"].append(GT)
        if 1 in tag:
            self.GPT.append((answer, GT))
        if 2 in tag:
            self.language["GT"].append(GT)
            self.language["answer"].append(answer)
        if 3 in tag:
            self.match["match"]["GT"].append(GT)
            self.match["match"]["answer"].append(answer)
            self.match["GPT"].append((answer, GT))
        if 4 in tag:
            self.traj_L2["GT"].append(GT)
            self.traj_L2["answer"].append(answer)

            
    def evaluation(self):
        print("evaluation start!")
        scores = {}
        # #scores["accuracy"] = self.eval_acc()
        # print("USE_INTERNAL: ", USE_INTERNAL)
        # if USE_INTERNAL:
        #     scores["chatgpt"] = self.eval_chatGPT_internal(self.GPT)
        # else:
        #     scores["chatgpt"] = self.eval_chatGPT(self.GPT)
        # scores.update(self.eval_language())
        # scores["match"] = self.eval_match()
        scores["traj_l2"] = self.eval_traj_L2()
        scores["chatgpt_longtail_behavior"] = self.eval_long_tail_behavior_planning_gpt_score(self.GPT)

        return scores


@exception_handler_decorator
def compute(params, quiet=True):
    try:
        print("Team name is: ", params.team_id)
        # if "29857a24" in params.team_id:
        #     global USE_INTERNAL
        #     USE_INTERNAL = True
        submission_filename = "submissions/{}-{}.{}".format(params.team_id, params.submission_id, FORMAT)
        print(submission_filename)
        
        submission = hf_hub_download(
            repo_id=params.competition_id,
            filename=submission_filename,
            token=params.token,
            repo_type="dataset",
        )
    except Exception as e:
        error_message = "submission.json not found in the repository, or it cannot be loaded."
        update_error_message_to_submission_comment(params, error_message)
        raise e

    with open(submission, 'r') as f :#, \    
        pred_file = json.load(f)
    team_name = pred_file.get('team', None)
    pred_file = pred_file["results"]
    pred_file = {pred_file[i]["id"]: pred_file[i] for i in range(len(pred_file))}

    if team_name is not None:
        update_teamname_to_submission_comment(params, team_name)
    else:
        update_error_message_to_submission_comment(params, "Team name not found in the submission file.")

    ground_truth = hf_hub_download(
        repo_id=params.competition_id,
        filename=GROUND_TRUTH,
        token=params.token,
        repo_type="dataset",
    )

    with open(ground_truth, 'r') as f:
        test_file = json.load(f)

    print("Submission and Ground Truth downloaded.")
    print("Evaluating...")

    try:
        evaluation = evaluation_suit()
        output = {"chatgpt": [], "traj_l2": []}
        for scene_id in test_file.keys():
            scene_data = test_file[scene_id]['key_frames']

            for frame_id in scene_data.keys():
                frame_data_qa = scene_data[frame_id]['QA']
                if 'long_tail_behavior_planning' not in frame_data_qa:
                    continue
                for i, qa in enumerate(frame_data_qa["long_tail_behavior_planning"]):
                    question = qa['Q']
                    GT = qa['A']
                    tag = [1,4]
                    idx = scene_id + "_" + frame_id + "_lt_" + str(i)
                    predict = pred_file[idx]["answer"]
                    evaluation.forward(tag, predict, GT)

        output = evaluation.evaluation()
        print("chatgpt score: ", output["chatgpt_longtail_behavior"])
        print("traj score: ", output["traj_l2"])
        for key in evaluation.language_score_keys:
            print(key, output[key])

        # Normalize to 0-1 and combine the scores: chatgpt, language, match, accuracy
        scores = []
        weights = [0.4, 0.2, 0.2, 0.2]
        
        # chatGPT
        score = output["chatgpt_longtail_behavior"] / 100.
        scores.append(score)

        # language

        output["final_score"] = score

    except Exception as e:
        error_message = "Evaluation failed. " + str(e)
        update_error_message_to_submission_comment(params, error_message)
        raise e

    evaluation = {
        "public_score": output,
        "private_score": output
    }

    return evaluation