import re import argparse import json import time import copy import traceback import random import requests import numpy as np import language_evaluation from multiprocessing import Pool import openai from huggingface_hub import HfApi, hf_hub_download import ast USE_INTERNAL = True GROUND_TRUTH = "ground_truth/drivelm_val.json" FORMAT = "json" # Deafult traj_L2 error MAXIMUM_L2_Error = 100 """Error handling code""" TEAM_MESSAGE_TEMPLATE = "The team name in your submission is [].\n" def update_teamname_to_submission_comment(params, team_name): hfapi = HfApi() team_info_in_repo = "submission_info/{}.json".format(params.team_id) team_info_file = hf_hub_download( repo_id=params.competition_id, filename=team_info_in_repo, token=params.token, repo_type="dataset", ) team_info = json.load(open(team_info_file, "r")) for sub_info in team_info["submissions"]: if sub_info["submission_id"] == params.submission_id: sub_info["submission_comment"] = TEAM_MESSAGE_TEMPLATE.replace("", team_name) + sub_info["submission_comment"] break with open(team_info_file, "w") as f: json.dump(team_info, f, indent=4) hfapi.upload_file( path_or_fileobj=team_info_file, path_in_repo=team_info_in_repo, repo_id=params.competition_id, repo_type="dataset", token=params.token, ) return ERROR_MESSAGE_TEMPLATE = "[ERROR] []\n" def update_error_message_to_submission_comment(params, error_message): hfapi = HfApi() team_info_in_repo = "submission_info/{}.json".format(params.team_id) team_info_file = hf_hub_download( repo_id=params.competition_id, filename=team_info_in_repo, token=params.token, repo_type="dataset", ) team_info = json.load(open(team_info_file, "r")) for sub_info in team_info["submissions"]: if sub_info["submission_id"] == params.submission_id: sub_info["submission_comment"] = ERROR_MESSAGE_TEMPLATE.replace("[]", error_message) + sub_info["submission_comment"] break with open(team_info_file, "w") as f: json.dump(team_info, f, indent=4) hfapi.upload_file( path_or_fileobj=team_info_file, path_in_repo=team_info_in_repo, repo_id=params.competition_id, repo_type="dataset", token=params.token, ) return def exception_handler_decorator(func): def wrapper(params): try: return func(params) except Exception as e: hfapi = HfApi() team_info_in_repo = "submission_info/{}.json".format(params.team_id) team_info_file = hf_hub_download( repo_id=params.competition_id, filename=team_info_in_repo, token=params.token, repo_type="dataset", ) team_info = json.load(open(team_info_file, "r")) for sub_info in team_info["submissions"]: if sub_info["submission_id"] == params.submission_id: sub_info["error_message"] = str(e) + '\n\n' + traceback.format_exc() break with open(team_info_file.replace('.json', '_error.json'), "w") as f: json.dump(sub_info, f, indent=4) hfapi.upload_file( path_or_fileobj=team_info_file.replace('.json', '_error.json'), path_in_repo=f'submission_error/{params.submission_id}.json', repo_id=params.competition_id, repo_type="dataset", token=params.token, ) raise e return wrapper """DriveLM Specific""" # API_KEYS = ["sk-NuE4a50TeXtSPVom099111B600C9435eAdCc445fE3FfFa72"] # need openai.api_base = "https://api.chatweb.plus/v1" API_KEYS = [ # "sk-proj-s8DmEUz3c0fMsXNvoK2eT3BlbkFJgxqZ2ZN35VfGbf6pz32K", # batch 7 # "sk-proj-WJA3qO4cTryRDhOEpB4QT3BlbkFJTxgvO3xyMOEoWsga3iIj", # "sk-proj-UXLnPZ54GqsFt8PUSUcfT3BlbkFJbcBmGdsnkUxKv9DMUUCv", # "sk-proj-STphQ681iiXwW3ooY0sKT3BlbkFJYlqJFZr3lVqRNVdFh87a", # "sk-proj-TnvZchmH06y3cKzixZ8XT3BlbkFJfMog1yTeQn1sX1kgLDw7", # "sk-proj-GBuvgZ7HbVcrgXWMx7poT3BlbkFJBPq7Wjl3DC7WCizEgO1y", # "sk-proj-iNV3Na6hlyFAVcDRAasiT3BlbkFJJavS6Od5RdDFyefuBRwq", # batch 8 # "sk-proj-DKvaprWQ8QSuV3Dd2LUmT3BlbkFJueAfFMUp1LZOeRoes1vD", # "sk-proj-HHziJI12Spjjj0UeFc4ET3BlbkFJ9DjK4XKuLtBPCj88kMsq", # "sk-proj-zImCrO7m5gjswwZhbMpOT3BlbkFJthf6TsqCiphXB4DtQxUG", # "sk-proj-KWKBI0kUMINMetoYwJWST3BlbkFJ3EdKYkLUkm4tzXcV8dbl", # "sk-proj-kv1aJThY7iupJ6qXdZpXT3BlbkFJSVIN1D2oJk7n60DXKngX", # "sk-proj-wtVxu5lh9rKbl1FUBXwOT3BlbkFJ2mF0RsqOEzfUpaKGVQ45", # "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", # batch 9 # "sk-wrFnTE0zlU1UngGmE8Dd1eC4880142Cd99A3CeB33eAe8d1e", # need openai.api_base = "https://api.claudeshop.top/" # "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", # "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", # "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", # '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', # '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', # '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', # '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', ######################### new api key ############################## 'sk-wrFnTE0zlU1UngGmE8Dd1eC4880142Cd99A3CeB33eAe8d1e', 'sk-DLon77JND74AgaCLKZoS0kZAdmUb3jU3oTzSvHfclS40flhS', 'sk-sXnrftCjtiduDy40ecIT3h0Xu0H8YM8dWATM06TLH7Lt0zpv', ] class KeyManager: def __init__(self): self.keys = API_KEYS # Initialize all keys as "unused" self.status = ['unused' for _ in API_KEYS] def get_key(self): # Try to find an unused key first unused_indices = [i for i, s in enumerate(self.status) if s == 'unused'] if unused_indices: index = random.choice(unused_indices) self.status[index] = 'using' return self.keys[index], index print("No unused key available! Assigning a key currently in use.") # If no unused key is available, try a 'using' key using_indices = [i for i, s in enumerate(self.status) if s == 'using'] if using_indices: index = random.choice(using_indices) return self.keys[index], index # No suitable key is left raise Exception("No available key left!") def set_fail(self, index): if 0 <= index < len(self.keys): self.status[index] = 'fail' else: raise Exception("Error: Index out of bounds") def __str__(self): return "\n".join(f"{self.keys[i]}: {self.status[i]}" for i in range(len(self.keys))) key_manager = KeyManager() class GPTEvaluation: def __init__(self, api_keys): self.api_keys = api_keys self._key_use = random.randint(0, len(self.api_keys)-1) self._switch_key() def _switch_key(self): self._key_use = (self._key_use + 1) % len(self.api_keys) openai.api_key = self.api_keys[self._key_use] print("Switched to key: ", self._key_use) # openai.api_base = "https://api.claudeshop.top/" def call_chatgpt(self, chatgpt_messages, max_tokens=40, model="gpt-3.5-turbo"): # default model: gpt-3.5-turbo response = openai.chat.completions.create( model=model, messages=chatgpt_messages, temperature=0.6, max_tokens=max_tokens ) reply = response.choices[0].message.content total_tokens = response.usage.total_tokens return reply, total_tokens def prepare_chatgpt_message(self, prompt): system_message = "an evaluator who rates my answer based on the correct answer" messages = [{"role": "system", "content": system_message}] messages.append({"role": "user", "content": "{}".format(prompt)}) return messages def forward(self, data): answer, GT = data prompts = "Rate my answer based on the correct answer out of 100, with higher scores indicating that the answer is closer to the correct answer, and you should be accurate to single digits like 62, 78, 41,etc. Output the number only, no need for explanation. " prompts = prompts + "This is the correct answer: " + GT + ". This is my answer: " + answer output = "" messages = self.prepare_chatgpt_message(prompts) reply, total_tokens = self.call_chatgpt(messages, max_tokens=3000) time.sleep(2) # default 1 output += reply output += "\n\n" output = output[:-2] return output class GPTEvaluationInternal: def __init__(self): self.api_key, self.key_idx = key_manager.get_key() print("Initial key id: ", self.key_idx) self.query_count = 0 # self.client = openai.Client(api_key=api_key) self.prompts_p1 = ["Rate my answer based on the correct answer out of 100, ", "Please score my answer out of 100 compared with correct answer, "] self.prompts_p2 = ["with higher scores indicating that the answer is closer to the correct answer, ", "higher is better, ", ""] self.prompts_p3 = ["you should be accurate to single digits like 62, 78, 41, etc. ", "be accurate to integer value. ", ""] self.prompts_p4 = ["Output the number only, no need for explanation. ", "Please respond the number only. ", "Please answer the score only. "] def call_chatgpt(self, chatgpt_messages, max_tokens=40, model="gpt-3.5-turbo"): # default model: gpt-3.5-turbo while True: try: # old # client = openai.Client(api_key=self.api_key) # response = client.chat.completions.create( # model=model, messages=chatgpt_messages, temperature=0.6, max_tokens=max_tokens # ) # new Baseurl = "https://api.claudeshop.top" url = Baseurl + "/v1/chat/completions" headers = { 'Accept': 'application/json', 'Authorization': f'Bearer {self.api_key}', 'User-Agent': 'Apifox/1.0.0 (https://apifox.com)', 'Content-Type': 'application/json' } payload = json.dumps({ "model": model, "messages": [ { "role": "system", "content": chatgpt_messages[0]["content"] }, { "role": "user", "content": chatgpt_messages[1]["content"] } ], "temperature": 0.6, "max_tokens": max_tokens, }) response = requests.request("POST", url, headers=headers, data=payload) content = response.json() except Exception as e: print("Failed prompt: ", chatgpt_messages) print("Key id ", self.key_idx, " fail with error after querying ", self.query_count, " times: ", e) print(type(e)) if ("We've encountered an issue with repetitive patterns in your prompt." in str(e)): return '00', 0 key_manager.set_fail(self.key_idx) self.api_key, self.key_idx = key_manager.get_key() self.query_count = 0 continue break self.query_count += 1 # old # reply = response.choices[0].message.content # total_tokens = response.usage.total_tokens # new print(content) reply = content['choices'][0]['message']['content'] total_tokens = content['usage']['total_tokens'] return reply, total_tokens def prepare_chatgpt_message(self, prompt): system_message = "an evaluator who rates my answer based on the correct answer" messages = [{"role": "system", "content": system_message}] messages.append({"role": "user", "content": "{}".format(prompt)}) return messages def forward(self, chunk_data): # self.client = client outputs = [] for data in chunk_data: answer, GT = data # prompts = random.choice(self.prompts_p1) + random.choice(self.prompts_p2) + random.choice(self.prompts_p3) + random.choice(self.prompts_p4) prompts = "Rate my answer based on the correct answer out of 100, with higher scores indicating that the answer is closer to the correct answer, and you should be accurate to single digits like 62, 78, 41,etc. Output the number only, no need for explanation. " prompts = prompts + "This is the correct answer: " + GT + ". This is my answer: " + answer output = "" messages = self.prepare_chatgpt_message(prompts) reply, total_tokens = self.call_chatgpt(messages, max_tokens=3000) time.sleep(0.5) # default 0.25 output += reply output += "\n\n" output = output[:-2] outputs.append(output) return outputs class evaluation_suit(): def __init__(self): self.language_eval = language_evaluation.CocoEvaluator(coco_types=["BLEU", "ROUGE_L", "CIDEr"]) self.num_process = 3 # default: 32 if USE_INTERNAL: self.chatgpt_eval = [] for i in range(self.num_process): self.chatgpt_eval.append(GPTEvaluationInternal()) else: # API_KEYS = API_KEYS_FAST # API_KEYS.extend(API_KEYS_SLOW) self.chatgpt_eval = GPTEvaluation(API_KEYS) self.GPT = [] self.accuracy = {"answer": [], "GT": []} self.language = {"answer": [], "GT": []} self.language_score_keys = [] self.match = {"match": {"answer": [], "GT": []}, "GPT": []} def eval_acc(self): scores = [] for i in range(len(self.accuracy["answer"])): answer = self.accuracy["answer"][i] GT = self.accuracy["GT"][i] if answer == GT: scores.append(1.0) else: scores.append(0.0) scores = sum(scores) / len(scores) return scores def extract_traj_from_response(self, response): response = response.split('[', 1)[1].split(']')[0] response = response.split(', ') coordinates = [list(ast.literal_eval(s)) for s in response] # convert to tensor coordinates = np.array(coordinates) # 6 x 2 return coordinates # 6 x 2 def eval_traj_L2(self): ADEs = [] for i in range(len(self.traj_L2["answer"])): answer = self.traj_L2["answer"][i] GT = self.traj_L2["GT"][i] try: # Compute the ADE of the traj answer_traj = self.extract_traj_from_response(answer) GT_traj = self.extract_traj_from_response(GT) # Compute the L2 betwween the two trajectories ADE = np.linalg.norm(answer_traj - GT_traj) except Exception as e: print(answer) print(GT) print("Can not extract traj from the response. Return default MAXIMUM_L2_Error.") ADE = MAXIMUM_L2_Error ADEs.append(ADE) mean_ADE = sum(ADEs) / len(ADEs) return mean_ADE def eval_long_tail_behavior_planning_gpt_score(self, data): # with Pool(32) as p: # Change the number based on your CPU cores # scores = p.map(self.chatgpt_eval.forward, data) scores = [] for item in data: answer, GT = item # Remove the traj from the answer and GT answer = answer.split(", and its 3-second future trajectory")[0] GT = GT.split("The autonomous vehicle's 3-second future trajectory is")[0] item = (answer, GT) #score = self.chatgpt_eval.forward(item) score = 50 scores.append(float(score)) #scores = list(map(float, scores)) scores = sum(scores) / len(scores) return scores def eval_chatGPT(self, data): remain_attempts = len(self.chatgpt_eval.api_keys) while remain_attempts > 0: try: with Pool(3) as p: # Change the number based on your CPU cores scores = p.map(self.chatgpt_eval.forward, data) scores = list(map(float, scores)) except Exception as e: print("This key fail with error: ", e) remain_attempts -= 1 if remain_attempts == 0: print("All keys failed!") raise e else: self.chatgpt_eval._switch_key() continue break scores = sum(scores) / len(scores) return scores def apply_function(self, task): func, chunk = task return func(chunk) def eval_chatGPT_internal(self, data): chunk_size = len(data) // self.num_process tasks = [(self.chatgpt_eval[i].forward, data[i * chunk_size : (i+1) * chunk_size]) for i in range(self.num_process)] with Pool(self.num_process) as p: scores_chunked = p.map(self.apply_function, tasks) scores = [score for chunk in scores_chunked for score in chunk] scores = list(map(float, scores)) scores = sum(scores) / len(scores) return scores def eval_language(self): """ return the dict evaluation results """ answer = self.language["answer"] GT = self.language["GT"] results_gen = self.language_eval.run_evaluation(answer, GT) results_gen_dict = { f"language/{k}": v for k, v in results_gen.items() } self.language_score_keys = list(results_gen_dict.keys()) return results_gen_dict def eval_match(self): outs1 = [] for i in range(len(self.match["match"]["answer"])): answer = self.match["match"]["answer"][i] GT = self.match["match"]["GT"][i] _, F1_score = self.match_result(answer, GT) outs1.append(F1_score * 100) outs1 = sum(outs1) / len(outs1) if USE_INTERNAL: outs2 = self.eval_chatGPT_internal(self.match["GPT"]) else: outs2 = self.eval_chatGPT(self.match["GPT"]) scores = (outs1 + outs2) / 2.0 return scores def eval_graph(self, question): # check if answer in self.graph question_nums = re.findall(r'\d+\.\d+', question) question_nums = np.array([list(map(float, x.split()))[0] for x in question_nums]).reshape(-1, 2) question_nums = [list(i) for i in question_nums] for q in question_nums: if q not in self.graph: return False return True def match_result(self, answer, GT): """ answer: [[1.,2.], [2., 3.]] GT: [[1., 2.], [2., 3.]] """ answer_nums = re.findall(r'\d+\.\d+', answer) GT_nums = re.findall(r'\d+\.\d+', GT) # transform string into float if len(answer_nums) % 2 != 0: answer_nums = answer_nums[:-1] answer_nums = np.array([list(map(float, x.split()))[0] for x in answer_nums]).reshape(-1, 2) GT_nums = np.array([list(map(float, x.split()))[0] for x in GT_nums]).reshape(-1, 2) length = len(GT_nums) matched_out = [] true_positives = 0 false_positives = 0 false_negatives = 0 for pred in answer_nums: closest_distance = float('inf') closest_gt = None closest_id = None for i, gt in enumerate(GT_nums): distance = np.sum(np.abs(pred - gt)) if distance < closest_distance: closest_distance = distance closest_gt = gt closest_id = i if closest_distance < 16: true_positives += 1 matched_out.append(closest_gt) GT_nums = np.delete(GT_nums, closest_id, axis=0) else: false_positives += 1 false_negatives = length - true_positives precision = true_positives / (true_positives + false_positives + 1e-8) recall = true_positives / (true_positives + false_negatives + 1e-8) F1 = 2 * precision * recall / (precision + recall + 1e-8) return matched_out, F1 def set_graph(self, answer, GT): self.graph, _ = self.match_result(answer, GT) self.graph = [list(i) for i in self.graph] def forward(self, tag, answer, GT): if 0 in tag: self.accuracy["answer"].append(answer) self.accuracy["GT"].append(GT) if 1 in tag: self.GPT.append((answer, GT)) if 2 in tag: self.language["GT"].append(GT) self.language["answer"].append(answer) if 3 in tag: self.match["match"]["GT"].append(GT) self.match["match"]["answer"].append(answer) self.match["GPT"].append((answer, GT)) if 4 in tag: self.traj_L2["GT"].append(GT) self.traj_L2["answer"].append(answer) def evaluation(self): print("evaluation start!") scores = {} # #scores["accuracy"] = self.eval_acc() # print("USE_INTERNAL: ", USE_INTERNAL) # if USE_INTERNAL: # scores["chatgpt"] = self.eval_chatGPT_internal(self.GPT) # else: # scores["chatgpt"] = self.eval_chatGPT(self.GPT) # scores.update(self.eval_language()) # scores["match"] = self.eval_match() scores["traj_l2"] = self.eval_traj_L2() scores["chatgpt_longtail_behavior"] = self.eval_long_tail_behavior_planning_gpt_score(self.GPT) return scores @exception_handler_decorator def compute(params, quiet=True): try: print("Team name is: ", params.team_id) # if "29857a24" in params.team_id: # global USE_INTERNAL # USE_INTERNAL = True submission_filename = "submissions/{}-{}.{}".format(params.team_id, params.submission_id, FORMAT) print(submission_filename) submission = hf_hub_download( repo_id=params.competition_id, filename=submission_filename, token=params.token, repo_type="dataset", ) except Exception as e: error_message = "submission.json not found in the repository, or it cannot be loaded." update_error_message_to_submission_comment(params, error_message) raise e with open(submission, 'r') as f :#, \ pred_file = json.load(f) team_name = pred_file.get('team', None) pred_file = pred_file["results"] pred_file = {pred_file[i]["id"]: pred_file[i] for i in range(len(pred_file))} if team_name is not None: update_teamname_to_submission_comment(params, team_name) else: update_error_message_to_submission_comment(params, "Team name not found in the submission file.") ground_truth = hf_hub_download( repo_id=params.competition_id, filename=GROUND_TRUTH, token=params.token, repo_type="dataset", ) with open(ground_truth, 'r') as f: test_file = json.load(f) print("Submission and Ground Truth downloaded.") print("Evaluating...") try: evaluation = evaluation_suit() output = {"chatgpt": [], "traj_l2": []} for scene_id in test_file.keys(): scene_data = test_file[scene_id]['key_frames'] for frame_id in scene_data.keys(): frame_data_qa = scene_data[frame_id]['QA'] if 'long_tail_behavior_planning' not in frame_data_qa: continue for i, qa in enumerate(frame_data_qa["long_tail_behavior_planning"]): question = qa['Q'] GT = qa['A'] tag = [1,4] idx = scene_id + "_" + frame_id + "_lt_" + str(i) predict = pred_file[idx]["answer"] evaluation.forward(tag, predict, GT) output = evaluation.evaluation() print("chatgpt score: ", output["chatgpt_longtail_behavior"]) print("traj score: ", output["traj_l2"]) for key in evaluation.language_score_keys: print(key, output[key]) # Normalize to 0-1 and combine the scores: chatgpt, language, match, accuracy scores = [] weights = [0.4, 0.2, 0.2, 0.2] # chatGPT score = output["chatgpt_longtail_behavior"] / 100. scores.append(score) # language output["final_score"] = score except Exception as e: error_message = "Evaluation failed. " + str(e) update_error_message_to_submission_comment(params, error_message) raise e evaluation = { "public_score": output, "private_score": output } return evaluation