ANDRYHA commited on
Commit
052fcb3
1 Parent(s): 95ca8bf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -1
README.md CHANGED
@@ -3,4 +3,90 @@ license: cc-by-4.0
3
  pretty_name: AViMoS
4
  size_categories:
5
  - 1K<n<10K
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  pretty_name: AViMoS
4
  size_categories:
5
  - 1K<n<10K
6
+ ---
7
+
8
+ # Dataset for ECCV-AIM Video Saliency Prediction Challenge 2024
9
+
10
+ [![Page](https://img.shields.io/badge/Challenge-Page-blue)](https://challenges.videoprocessing.ai/challenges/video-saliency-prediction.html)
11
+ [![Paper](https://img.shields.io/badge/Paper-arXiv-red)](https://arxiv.org/)
12
+ [![Challenges](https://img.shields.io/badge/Challenges-AIM%202024-orange)](https://cvlai.net/aim/2024/)
13
+ [![Benchmarks](https://img.shields.io/badge/Benchmarks-VideoProcessing-purple)](https://videoprocessing.ai/benchmarks/)
14
+
15
+ We provide a novel audio-visual mouse saliency (<em>AViMoS</em>) dataset with the following key-features:
16
+ * Diverse content: movie, sports, live, vertical videos, etc.;
17
+ * Large scale: **1500** videos with mean **19s** duration;
18
+ * High resolution: all streams are **FullHD**;
19
+ * **Audio** track saved and played to observers;
20
+ * Mouse fixations from **>5000** observers (**>70** per video);
21
+ * License: **CC-BY**;
22
+
23
+ File structure:
24
+ 1) `Videos.zip` — 1500 (1000 Train + 500 Test) .mp4 video (kindly reminder: many videos contain an audio stream and users watched the video with the sound turned ON!)
25
+
26
+ 2) `TrainTestSplit.json` — in this JSON we provide Train/Public Test/Private Test split of all videos
27
+
28
+ 3) `SaliencyTrain.zip/SaliencyTest.zip` — almost losslessly (crf 0, 10bit, min-max normalized) compressed continuous saliency maps videos for Train/Test subset
29
+
30
+ 4) `FixationsTrain.zip/FixationsTest.zip` — contains the following files for Train/Test subset:
31
+
32
+ * `.../video_name/fixations.json` — per-frame fixations coordinates, from which saliency maps were obtained, this JSON will be used for metrics calculation
33
+
34
+ * `.../video_name/fixations/` — binary fixation maps in '.png' format (since some fixations could share the same pixel, this is a lossy representation and is NOT used either in calculating metrics or generating Gaussians, however, we provide them for visualization and frames count checks)
35
+
36
+ 5) `VideoInfo.json` — meta information about each video (e.g. license)
37
+
38
+ ## Evaluation
39
+
40
+ ### Environment setup
41
+
42
+ ```
43
+ conda create -n saliency python=3.8.16
44
+ conda activate saliency
45
+ pip install numpy==1.24.2 opencv-python==4.7.0.72 tqdm==4.65.0
46
+ conda install ffmpeg=4.4.2 -c conda-forge
47
+ ```
48
+ ### Run evaluation
49
+ Archives with videos were accepted from challenge participants as submissions and scored using the same pipeline as in `bench.py`.
50
+
51
+ Usage example:
52
+
53
+ 1) Check that your predictions match the structure and names of the [baseline CenterPrior submission](https://drive.google.com/file/d/1rPgMdb4L79OD2vvpDQyqWZIDox78rmxG/view)
54
+ 2) Install `pip install -r requirments.txt`, `conda install ffmpeg`
55
+ 3) Download and extract `SaliencyTest.zip`, `FixationsTest.zip`, and `TrainTestSplit.json` files from the dataset page
56
+ 4) Run `python bench.py` with flags:
57
+ * `--model_video_predictions ./SampleSubmission-CenterPrior` — folder with predicted saliency videos
58
+ * `--model_extracted_frames ./SampleSubmission-CenterPrior-Frames` — folder to store prediction frames (should not exist at launch time), requires ~170 GB of free space
59
+ * `--gt_video_predictions ./SaliencyTest/Test` — folder from dataset page with gt saliency videos
60
+ * `--gt_extracted_frames ./SaliencyTest-Frames` — folder to store ground-truth frames (should not exist at launch time), requires ~170 GB of free space
61
+ * `--gt_fixations_path ./FixationsTest/Test` — folder from dataset page with gt saliency fixations
62
+ * `--split_json ./TrainTestSplit.json` — JSON from dataset page with names splitting
63
+ * `--results_json ./results.json` — path to the output results json
64
+ * `--mode public_test` — public_test/private_test subsets
65
+ 5) The result you get will be available following `results.json` path
66
+
67
+
68
+ ## Challenge Leaderboard
69
+
70
+ Please follow the paper to learn about the team's solutions, and challenge page for more results.
71
+
72
+ Here we only provide the final leaderboard:
73
+
74
+ | Team Name | AUC-Judd | CC | SIM | NSS | Rank | #Params (M) |
75
+ |-----------------|:-----------:|:--------:|:---------:|:---------:|:--------:|:--------------:|
76
+ | CV_MM | **0.894** | **0.774** | **0.635** | **3.464** | 1.00 | 420.5 |
77
+ | VistaHL | <ins>0.892</ins> | <ins>0.769</ins> | <ins>0.623</ins> | 3.352 | 2.75 | 187.7 |
78
+ | PeRCeiVe Lab | 0.857 | <em>0.766</em> | 0.610 | <ins>3.422</ins> | 3.75 | 402.9 |
79
+ | SJTU-MML | 0.858 | 0.760 | <em>0.615</em> | 3.356 | 4.00 | 1288.7 |
80
+ | MVP | 0.838 | 0.749 | 0.587 | <em>3.404</em> | 5.00 | 99.6 |
81
+ | ZenithChaser | <em>0.869</em> | 0.606 | 0.517 | 2.482 | 5.50 | 0.19 |
82
+ | Exodus | 0.861 | 0.599 | 0.510 | 2.491 | 6.00 | 69.7 |
83
+ | Baseline (CP) | 0.833 | 0.449 | 0.424 | 1.659 | 8.00 | - |
84
+
85
+ ##
86
+ ## Citation
87
+
88
+ Please cite the paper if you find challenge materials useful for your research:
89
+
90
+ `@article{
91
+ }
92
+ `