File size: 8,957 Bytes
9b93f60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import os, sys
import torch
import numpy as np
# import the dataset generation functions
from custom_dataset import get_data_and_generate_train_val_test_sets as multivariate_dataset
from custom_dataset_univariate import get_data_and_generate_train_val_test_sets as univariate_dataset
# names of features
feat_names = ['energy consumption (kwh)', '15-min interval of day [0..96]', 'day of week [0..6]', 'temperature (celsius)', 'windspeed (m/s)', 'floor area (ft2)', 'wall area (m2)', 'window area (m2)']
# load raw numpy data
heterogenous_data, homogenous_data = np.load('./IllinoisHeterogenous.npz')['data'], np.load('./IllinoisHomogenous.npz')['data']
# generate train-val-test datasets
# CASE 1: multivariate, with the time indices also normalized. heterogenous dataset
train_1, val_1, test_1, mean_1, std_1 = multivariate_dataset(
data_array=heterogenous_data, # choose the appropriate file - homogenous or heterogenous
split_ratios=[0.8,0.1,0.1], # ratios that add up to 1 - the split is made along all buildings' time axis
dataset_kwargs={
'num_bldg': heterogenous_data.shape[0],
'lookback': 512,
'lookahead': 48,
'normalize': True,
'dtype': torch.float32,
'transformer': False # time indices are not normalized - use in non-Transformer scenarios where index embedding is not needed
}
)
# CASE 2: multivariate, with the time indices not normalized. heterogenous dataset
train_2, val_2, test_2, mean_2, std_2 = multivariate_dataset(
data_array=heterogenous_data, # choose the appropriate file - homogenous or heterogenous
split_ratios=[0.8,0.1,0.1], # ratios that add up to 1 - the split is made along all buildings' time axis
dataset_kwargs={
'num_bldg': heterogenous_data.shape[0],
'lookback': 512,
'lookahead': 48,
'normalize': True,
'dtype': torch.float32,
'transformer': True # time indices are normalized - use in Transformer scenarios where index is embedded
}
)
# CASE 3: univariate. heterogenous dataset
train_3, val_3, test_3, mean_3, std_3 = univariate_dataset(
data_array=heterogenous_data, # choose the appropriate file - homogenous or heterogenous
split_ratios=[0.8,0.1,0.1], # ratios that add up to 1 - the split is made along all buildings' time axis
dataset_kwargs={
'num_bldg': heterogenous_data.shape[0],
'lookback': 512,
'lookahead': 48,
'normalize': True,
'dtype': torch.float32,
}
)
# CASE 4: multivariate, with the time indices also normalized. homogenous dataset
train_4, val_4, test_4, mean_4, std_4 = multivariate_dataset(
data_array=homogenous_data, # choose the appropriate file - homogenous or heterogenous
split_ratios=[0.8,0.1,0.1], # ratios that add up to 1 - the split is made along all buildings' time axis
dataset_kwargs={
'num_bldg': homogenous_data.shape[0],
'lookback': 512,
'lookahead': 48,
'normalize': True,
'dtype': torch.float32,
'transformer': False # time indices are not normalized - use in non-Transformer scenarios where index embedding is not needed
}
)
# CASE 5: multivariate, with the time indices not normalized. homogenous dataset
train_5, val_5, test_5, mean_5, std_5 = multivariate_dataset(
data_array=homogenous_data, # choose the appropriate file - homogenous or heterogenous
split_ratios=[0.8,0.1,0.1], # ratios that add up to 1 - the split is made along all buildings' time axis
dataset_kwargs={
'num_bldg': homogenous_data.shape[0],
'lookback': 512,
'lookahead': 48,
'normalize': True,
'dtype': torch.float32,
'transformer': True # time indices are normalized - use in Transformer scenarios where index is embedded
}
)
# CASE 6: multivariate. heterogenous dataset
train_6, val_6, test_6, mean_6, std_6 = univariate_dataset(
data_array=homogenous_data, # choose the appropriate file - homogenous or heterogenous
split_ratios=[0.8,0.1,0.1], # ratios that add up to 1 - the split is made along all buildings' time axis
dataset_kwargs={
'num_bldg': homogenous_data.shape[0],
'lookback': 512,
'lookahead': 48,
'normalize': True,
'dtype': torch.float32,
}
)
if __name__ == "__main__":
# Create dataloaders
dl_1 = torch.utils.data.DataLoader(train_1, batch_size=32, shuffle=False)
dl_2 = torch.utils.data.DataLoader(train_2, batch_size=32, shuffle=False)
dl_3 = torch.utils.data.DataLoader(train_3, batch_size=32, shuffle=False)
dl_4 = torch.utils.data.DataLoader(train_4, batch_size=32, shuffle=False)
dl_5 = torch.utils.data.DataLoader(train_5, batch_size=32, shuffle=False)
dl_6 = torch.utils.data.DataLoader(train_6, batch_size=32, shuffle=False)
# print out of the shapes of elements in the first dataloader
for inp, label, future_time in dl_1:
print("Case 1: Each dataloader item contains input, label, future_time. Here time indices are normalized. Dataset is IL-HET.")
print(f"Input shape is (including batch size of 32): {inp.shape}.")
print(f"Label shape is (including batch size of 32): {label.shape}.")
print(f"Future time shape is (including batch size of 32): {future_time.shape}.\n")
for m,s,n,i in zip(mean_1.flatten().tolist(),std_1.flatten().tolist(), feat_names, range(1,len(feat_names)+1)):
print(f"Feature number: {i}, name: {n}, mean: {m}, std: {s}."+("(unnormalized)" if m==0 and s==1 else ""))
print('----------------\n')
break
# print out of the shapes of elements in the second dataloader
for inp, label, future_time in dl_2:
print("Case 2: Each dataloader item contains input, label, future_time. Here time indices are not normalized to allow embedding. Dataset is IL-HET.")
print(f"Input shape is (including batch size of 32): {inp.shape}.")
print(f"Label shape is (including batch size of 32): {label.shape}.")
print(f"Future time shape is (including batch size of 32): {future_time.shape}.\n")
for m,s,n,i in zip(mean_2.flatten().tolist(),std_2.flatten().tolist(), feat_names, range(1,len(feat_names)+1)):
print(f"Feature number: {i}, name: {n}, mean: {m}, std: {s}."+("(unnormalized)" if m==0 and s==1 else ""))
print('----------------\n')
break
# print out of the shapes of elements in the third dataloader
for inp, label in dl_3:
print("Case 3: Each dataloader item contains input, label. Dataset is IL-HET.")
print(f"Input shape is (including batch size of 32): {inp.shape}.")
print(f"Label shape is (including batch size of 32): {label.shape}.\n")
print(f"Feature number: 1, name: {feat_names[0]}, mean: {mean_3.item()}, std: {std_3.item()}.")
print('----------------\n')
break
# print out of the shapes of elements in the first dataloader
for inp, label, future_time in dl_4:
print("Case 4: Each dataloader item contains input, label, future_time. Here time indices are normalized. Dataset is IL-HOM.")
print(f"Input shape is (including batch size of 32): {inp.shape}.")
print(f"Label shape is (including batch size of 32): {label.shape}.")
print(f"Future time shape is (including batch size of 32): {future_time.shape}.\n")
for m,s,n,i in zip(mean_4.flatten().tolist(),std_4.flatten().tolist(), feat_names, range(1,len(feat_names)+1)):
print(f"Feature number: {i}, name: {n}, mean: {m}, std: {s}."+("(unnormalized)" if m==0 and s==1 else ""))
print('----------------\n')
break
# print out of the shapes of elements in the second dataloader
for inp, label, future_time in dl_5:
print("Case 5: Each dataloader item contains input, label, future_time. Here time indices are not normalized to allow embedding. Dataset is IL-HOM.")
print(f"Input shape is (including batch size of 32): {inp.shape}.")
print(f"Label shape is (including batch size of 32): {label.shape}.")
print(f"Future time shape is (including batch size of 32): {future_time.shape}.\n")
for m,s,n,i in zip(mean_5.flatten().tolist(),std_5.flatten().tolist(), feat_names, range(1,len(feat_names)+1)):
print(f"Feature number: {i}, name: {n}, mean: {m}, std: {s}."+("(unnormalized)" if m==0 and s==1 else ""))
print('----------------\n')
break
# print out of the shapes of elements in the third dataloader
for inp, label in dl_6:
print("Case 6: Each dataloader item contains input, label. Dataset is IL-HOM.")
print(f"Input shape is (including batch size of 32): {inp.shape}.")
print(f"Label shape is (including batch size of 32): {label.shape}.")
print(f"Feature number: 1, name: {feat_names[0]}, mean: {mean_6.item()}, std: {std_6.item()}.")
print('----------------\n')
break
|