Shourya Bose commited on
Commit
f8976a0
·
1 Parent(s): 251a42c

upload custom dataset

Browse files
Files changed (1) hide show
  1. custom_dataset.py +137 -0
custom_dataset.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn as nn
4
+ from torch.utils.data import Dataset
5
+ from typing import Union, List, Tuple, Dict
6
+
7
+ class NRELComstock(Dataset):
8
+
9
+ def __init__(
10
+ self,
11
+ data_array: np.ndarray,
12
+ num_bldg: int = 12,
13
+ lookback: int = 12,
14
+ lookahead:int = 4,
15
+ normalize: bool = True,
16
+ dtype: torch.dtype = torch.float32,
17
+ mean: np.ndarray = None,
18
+ std: np.ndarray = None,
19
+ transformer: bool = True
20
+ ):
21
+
22
+ if data_array.shape[0] < num_bldg:
23
+ raise ValueError('More buildings than present in file!')
24
+ else:
25
+ self.data = data_array[:num_bldg,:,:]
26
+ self.num_clients = num_bldg
27
+
28
+ # lookback and lookahead
29
+ self.lookback, self.lookahead = lookback, lookahead
30
+
31
+ # Calculate statistics
32
+ stacked = self.data.reshape(self.data.shape[0]*self.data.shape[1],self.data.shape[2])
33
+ if (mean is None) or (std is None): # statistics are not provided. Generate it from data
34
+ self.mean = stacked.mean(axis=0,keepdims=True)
35
+ self.std = stacked.std(axis=0,keepdims=True)
36
+ else: # statistics are provided. Use the provided statistics
37
+ self.mean = mean
38
+ self.std = std
39
+
40
+ if transformer:
41
+ # TRANSFORMER SPECIFIC: do not normalize date and time
42
+ self.mean[0,1], self.std[0,1] = 0., 1.
43
+ self.mean[0,2], self.std[0,2] = 0., 1.
44
+
45
+ self.ndata = (self.data-self.mean)/self.std # normalized data
46
+
47
+ # disambiguating between clients
48
+ len_per_client = self.data.shape[1] - lookback - lookahead + 1
49
+ self.total_len = len_per_client * self.num_clients
50
+ self.splits = np.array_split(np.arange(self.total_len),self.num_clients)
51
+
52
+ # save whether to normalize, and the data type
53
+ self.normalize = normalize
54
+ self.dtype = dtype
55
+
56
+ # if normalization is disabled, return to default statistics
57
+ if not self.normalize:
58
+ self.mean = np.zeros_like(self.mean)
59
+ self.std = np.ones_like(self.std)
60
+
61
+ def _client_and_idx(self, idx):
62
+
63
+ part_size = self.total_len // self.num_clients
64
+ part_index = idx // part_size
65
+ relative_position = idx % part_size
66
+
67
+ return relative_position, part_index
68
+
69
+ def __len__(self):
70
+
71
+ return self.total_len
72
+
73
+ def __getitem__(self, idx):
74
+
75
+ tidx, cidx = self._client_and_idx(idx)
76
+
77
+ if self.normalize:
78
+ x = self.ndata[cidx,tidx:tidx+self.lookback,:]
79
+ y = self.ndata[cidx,tidx+self.lookback+self.lookahead-1,[0]]
80
+ else:
81
+ x = self.data[cidx,tidx:tidx+self.lookback,:]
82
+ y = self.data[cidx,tidx+self.lookback+self.lookahead-1,[0]]\
83
+
84
+ # Future time and weather indices
85
+ fut_time = self.data[cidx,tidx+self.lookback:tidx+self.lookback+self.lookahead,1:3]
86
+
87
+ x,y,fut_time,= torch.tensor(x,dtype=self.dtype), torch.tensor(y,dtype=self.dtype), torch.tensor(fut_time,dtype=self.dtype)
88
+
89
+ return x,y,fut_time
90
+
91
+
92
+ def get_data_and_generate_train_val_test_sets(
93
+ data_array: np.ndarray, # data matrix of shape (num_bldg,num_time_points,num_features). NOTE that features 2 and 3 are categorical features to embed time indices
94
+ split_ratios: Union[List,Tuple], # 3-element list containing the ratios of train-val-test
95
+ dataset_kwargs: Tuple # ONLY include num_bldg, lookback, lookahead, normalize, dtype, and transformer keys. See NRELComstock definition above for details.
96
+ ):
97
+
98
+ assert len(split_ratios) == 3, "The split list must contain three elements."
99
+ assert all(isinstance(i, (int, float)) for i in split_ratios), "List contains non-numeric elements"
100
+ assert sum(split_ratios) <= 1, "Ratios must not sum upto more than 1."
101
+
102
+ cum_splits = np.cumsum(split_ratios)
103
+
104
+ train = data_array[:,:int(cum_splits[0]*data_array.shape[1]),:]
105
+ val = data_array[:,int(cum_splits[0]*data_array.shape[1]):int(cum_splits[1]*data_array.shape[1]),:]
106
+ test = data_array[:,int(cum_splits[1]*data_array.shape[1]):,:]
107
+
108
+ if 0 in train.shape:
109
+ train_set = None
110
+ raise ValueError("Train set is empty. Possibly empty data matrix or 0 ratio for train set has been input.")
111
+ else:
112
+ train_set = NRELComstock(
113
+ data_array = train,
114
+ **dataset_kwargs
115
+ )
116
+ mean, std = train_set.mean, train_set.std
117
+ if 0 in val.shape:
118
+ val_set = None
119
+ else:
120
+ val_set = NRELComstock(
121
+ data_array = val,
122
+ mean = mean,
123
+ std = std,
124
+ **dataset_kwargs
125
+ )
126
+ if 0 in test.shape:
127
+ test_set = None
128
+ else:
129
+ test_set = NRELComstock(
130
+ data_array = test,
131
+ mean = mean,
132
+ std = std,
133
+ **dataset_kwargs
134
+ )
135
+
136
+ # return the three datasets, as well as the statistics
137
+ return train_set, val_set, test_set, mean, std