Datasets:
Tasks:
Translation
Size:
1K - 10K
Delete tamil_eng_data.py
Browse files- tamil_eng_data.py +0 -129
tamil_eng_data.py
DELETED
@@ -1,129 +0,0 @@
|
|
1 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
"""Simple sentences Dataset - contains 90 mins of speech data"""
|
16 |
-
|
17 |
-
import csv
|
18 |
-
import json
|
19 |
-
import os
|
20 |
-
|
21 |
-
import datasets
|
22 |
-
|
23 |
-
_CITATION = """\
|
24 |
-
@misc{simpledata_1,
|
25 |
-
title = {Whisper model for tamil-to-eng translation},
|
26 |
-
publisher = {Achitha},
|
27 |
-
year = {2022},
|
28 |
-
}
|
29 |
-
@misc{simpledata_2,
|
30 |
-
title = {Fine-tuning whisper model},
|
31 |
-
publisher = {Achitha},
|
32 |
-
year = {2022},
|
33 |
-
}
|
34 |
-
"""
|
35 |
-
_DESCRIPTION = """\
|
36 |
-
The data contains roughly one and half hours of audio and transcripts in Tamil language.
|
37 |
-
"""
|
38 |
-
|
39 |
-
_HOMEPAGE = ""
|
40 |
-
|
41 |
-
_LICENSE = "MIT"
|
42 |
-
|
43 |
-
|
44 |
-
_METADATA_URLS = {
|
45 |
-
"train": "data/train.jsonl",
|
46 |
-
"test": "data/test.jsonl"
|
47 |
-
}
|
48 |
-
_URLS = {
|
49 |
-
"train": "data/train.tar.gz",
|
50 |
-
"test": "data/test.tar.gz",
|
51 |
-
|
52 |
-
}
|
53 |
-
|
54 |
-
class simple_data(datasets.GeneratorBasedBuilder):
|
55 |
-
|
56 |
-
|
57 |
-
VERSION = datasets.Version("1.1.0")
|
58 |
-
def _info(self):
|
59 |
-
features = datasets.Features(
|
60 |
-
{
|
61 |
-
"audio": datasets.Audio(sampling_rate=16_000),
|
62 |
-
"path": datasets.Value("string"),
|
63 |
-
"sentence": datasets.Value("string"),
|
64 |
-
"length": datasets.Value("float")
|
65 |
-
|
66 |
-
}
|
67 |
-
)
|
68 |
-
return datasets.DatasetInfo(
|
69 |
-
description=_DESCRIPTION,
|
70 |
-
features=features,
|
71 |
-
supervised_keys=("sentence", "label"),
|
72 |
-
homepage=_HOMEPAGE,
|
73 |
-
license=_LICENSE,
|
74 |
-
citation=_CITATION,
|
75 |
-
)
|
76 |
-
|
77 |
-
def _split_generators(self, dl_manager):
|
78 |
-
metadata_paths = dl_manager.download(_METADATA_URLS)
|
79 |
-
train_archive = dl_manager.download(_URLS["train"])
|
80 |
-
test_archive = dl_manager.download(_URLS["test"])
|
81 |
-
local_extracted_train_archive = dl_manager.extract(train_archive) if not dl_manager.is_streaming else None
|
82 |
-
local_extracted_test_archive = dl_manager.extract(test_archive) if not dl_manager.is_streaming else None
|
83 |
-
test_archive = dl_manager.download(_URLS["test"])
|
84 |
-
train_dir = "train"
|
85 |
-
test_dir = "test"
|
86 |
-
|
87 |
-
return [
|
88 |
-
datasets.SplitGenerator(
|
89 |
-
name=datasets.Split.TRAIN,
|
90 |
-
gen_kwargs={
|
91 |
-
"metadata_path": metadata_paths["train"],
|
92 |
-
"local_extracted_archive": local_extracted_train_archive,
|
93 |
-
"path_to_clips": train_dir,
|
94 |
-
"audio_files": dl_manager.iter_archive(train_archive),
|
95 |
-
},
|
96 |
-
),
|
97 |
-
datasets.SplitGenerator(
|
98 |
-
name=datasets.Split.TEST,
|
99 |
-
gen_kwargs={
|
100 |
-
"metadata_path": metadata_paths["test"],
|
101 |
-
"local_extracted_archive": local_extracted_test_archive,
|
102 |
-
"path_to_clips": test_dir,
|
103 |
-
"audio_files": dl_manager.iter_archive(test_archive),
|
104 |
-
},
|
105 |
-
),
|
106 |
-
|
107 |
-
]
|
108 |
-
|
109 |
-
def _generate_examples(self, metadata_path, local_extracted_archive, path_to_clips, audio_files):
|
110 |
-
"""Yields examples as (key, example) tuples."""
|
111 |
-
examples = {}
|
112 |
-
with open(metadata_path, encoding="utf-8") as f:
|
113 |
-
for key, row in enumerate(f):
|
114 |
-
data = json.loads(row)
|
115 |
-
examples[data["path"]] = data
|
116 |
-
inside_clips_dir = False
|
117 |
-
id_ = 0
|
118 |
-
for path, f in audio_files:
|
119 |
-
if path.startswith(path_to_clips):
|
120 |
-
inside_clips_dir = True
|
121 |
-
if path in examples:
|
122 |
-
result = examples[path]
|
123 |
-
path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path
|
124 |
-
result["audio"] = {"path": path, "bytes": f.read()}
|
125 |
-
result["path"] = path
|
126 |
-
yield id_, result
|
127 |
-
id_ += 1
|
128 |
-
elif inside_clips_dir:
|
129 |
-
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|