AdaptLLM commited on
Commit
699648e
β€’
1 Parent(s): 37214cc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -38
README.md CHANGED
@@ -28,7 +28,7 @@ We explore **continued pre-training on domain-specific corpora** for large langu
28
  ### πŸ€— We are currently working hard on developing models across different domains, scales and architectures! Please stay tuned! πŸ€—
29
 
30
  **************************** **Updates** ****************************
31
- * 2024/4/2: Released the training and testing splits of all the evaluation datasets: [ChemProt](https://huggingface.co/datasets/AdaptLLM/ChemProt)
32
  * 2024/1/16: πŸŽ‰ Our [research paper](https://huggingface.co/papers/2309.09530) has been accepted by ICLR 2024!!!πŸŽ‰
33
  * 2023/12/19: Released our [13B base models](https://huggingface.co/AdaptLLM/law-LLM-13B) developed from LLaMA-1-13B.
34
  * 2023/12/8: Released our [chat models](https://huggingface.co/AdaptLLM/law-chat) developed from LLaMA-2-Chat-7B.
@@ -49,52 +49,42 @@ Moreover, we scale up our base model to LLaMA-1-13B to see if **our method is si
49
  ## Domain-Specific LLaMA-2-Chat
50
  Our method is also effective for aligned models! LLaMA-2-Chat requires a [specific data format](https://huggingface.co/blog/llama2#how-to-prompt-llama-2), and our **reading comprehension can perfectly fit the data format** by transforming the reading comprehension into a multi-turn conversation. We have also open-sourced chat models in different domains: [Biomedicine-Chat](https://huggingface.co/AdaptLLM/medicine-chat), [Finance-Chat](https://huggingface.co/AdaptLLM/finance-chat) and [Law-Chat](https://huggingface.co/AdaptLLM/law-chat)
51
 
52
- For example, to chat with the finance-chat model:
53
- ```python
54
- from transformers import AutoModelForCausalLM, AutoTokenizer
55
 
56
- model = AutoModelForCausalLM.from_pretrained("AdaptLLM/finance-chat")
57
- tokenizer = AutoTokenizer.from_pretrained("AdaptLLM/finance-chat")
58
 
59
- # Put your input here:
60
- user_input = '''Use this fact to answer the question: Title of each class Trading Symbol(s) Name of each exchange on which registered
61
- Common Stock, Par Value $.01 Per Share MMM New York Stock Exchange
62
- MMM Chicago Stock Exchange, Inc.
63
- 1.500% Notes due 2026 MMM26 New York Stock Exchange
64
- 1.750% Notes due 2030 MMM30 New York Stock Exchange
65
- 1.500% Notes due 2031 MMM31 New York Stock Exchange
66
 
67
- Which debt securities are registered to trade on a national securities exchange under 3M's name as of Q2 of 2023?'''
 
 
 
 
 
 
 
 
 
 
 
68
 
69
- # Apply the prompt template and system prompt of LLaMA-2-Chat demo for chat models (NOTE: NO prompt template is required for base models!)
70
- our_system_prompt = "\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n" # Please do NOT change this
71
- prompt = f"<s>[INST] <<SYS>>{our_system_prompt}<</SYS>>\n\n{user_input} [/INST]"
72
 
73
- # # NOTE:
74
- # # If you want to apply your own system prompt, please integrate it into the instruction part following our system prompt like this:
75
- # your_system_prompt = "Please, check if the answer can be inferred from the pieces of context provided."
76
- # prompt = f"<s>[INST] <<SYS>>{our_system_prompt}<</SYS>>\n\n{your_system_prompt}\n{user_input} [/INST]"
77
 
78
- inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).input_ids.to(model.device)
79
- outputs = model.generate(input_ids=inputs, max_length=4096)[0]
80
 
81
- answer_start = int(inputs.shape[-1])
82
- pred = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True)
83
 
84
- print(f'### User Input:\n{user_input}\n\n### Assistant Output:\n{pred}')
 
85
  ```
86
 
87
- ## Domain-Specific Tasks
88
-
89
- ### Pre-templatized/Formatted Datasets
90
- To easily reproduce our prompting results, we have uploaded the filled-in zero/few-shot input instructions and output completions of each domain-specific task: [biomedicine-tasks](https://huggingface.co/datasets/AdaptLLM/medicine-tasks), [finance-tasks](https://huggingface.co/datasets/AdaptLLM/finance-tasks), and [law-tasks](https://huggingface.co/datasets/AdaptLLM/law-tasks).
91
-
92
- **Note:** those filled-in instructions are specifically tailored for models before alignment and do NOT fit for the specific data format required for chat models.
93
-
94
- ### Raw Datasets
95
- We have also uploaded all the raw datasets, for fine-tuning or other usage: [ChemProt](https://huggingface.co/datasets/AdaptLLM/ChemProt)
96
-
97
-
98
  ## Citation
99
  If you find our work helpful, please cite us:
100
  ```bibtex
@@ -108,7 +98,7 @@ url={https://openreview.net/forum?id=y886UXPEZ0}
108
  }
109
  ```
110
 
111
- And the original dataset:
112
  ```bibtex
113
  @article{ChemProt,
114
  author = {Jens Kringelum and
 
28
  ### πŸ€— We are currently working hard on developing models across different domains, scales and architectures! Please stay tuned! πŸ€—
29
 
30
  **************************** **Updates** ****************************
31
+ * 2024/4/2: Released the raw data splits (train and test) of all the evaluation datasets
32
  * 2024/1/16: πŸŽ‰ Our [research paper](https://huggingface.co/papers/2309.09530) has been accepted by ICLR 2024!!!πŸŽ‰
33
  * 2023/12/19: Released our [13B base models](https://huggingface.co/AdaptLLM/law-LLM-13B) developed from LLaMA-1-13B.
34
  * 2023/12/8: Released our [chat models](https://huggingface.co/AdaptLLM/law-chat) developed from LLaMA-2-Chat-7B.
 
49
  ## Domain-Specific LLaMA-2-Chat
50
  Our method is also effective for aligned models! LLaMA-2-Chat requires a [specific data format](https://huggingface.co/blog/llama2#how-to-prompt-llama-2), and our **reading comprehension can perfectly fit the data format** by transforming the reading comprehension into a multi-turn conversation. We have also open-sourced chat models in different domains: [Biomedicine-Chat](https://huggingface.co/AdaptLLM/medicine-chat), [Finance-Chat](https://huggingface.co/AdaptLLM/finance-chat) and [Law-Chat](https://huggingface.co/AdaptLLM/law-chat)
51
 
52
+ ## Domain-Specific Tasks
 
 
53
 
54
+ ### Pre-templatized/Formatted Testing Splits
55
+ To easily reproduce our prompting results, we have uploaded the filled-in zero/few-shot input instructions and output completions of the test each domain-specific task: [biomedicine-tasks](https://huggingface.co/datasets/AdaptLLM/medicine-tasks), [finance-tasks](https://huggingface.co/datasets/AdaptLLM/finance-tasks), and [law-tasks](https://huggingface.co/datasets/AdaptLLM/law-tasks).
56
 
57
+ **Note:** those filled-in instructions are specifically tailored for models before alignment and do NOT fit for the specific data format required for chat models.
 
 
 
 
 
 
58
 
59
+ ### Raw Datasets
60
+ We have also uploaded the raw training and testing splits, for facilitating fine-tuning or other usages:
61
+ - [ChemProt](https://huggingface.co/datasets/AdaptLLM/ChemProt)
62
+ - [RCT](https://huggingface.co/datasets/AdaptLLM/RCT)
63
+ - [ConvFinQA](https://huggingface.co/datasets/AdaptLLM/ConvFinQA)
64
+ - [FiQA_SA](https://huggingface.co/datasets/AdaptLLM/FiQA_SA)
65
+ - [Headline](https://huggingface.co/datasets/AdaptLLM/Headline)
66
+ - [NER](https://huggingface.co/datasets/AdaptLLM/NER)
67
+
68
+ The other datasets used in our paper have already been available in huggingface, so you can directly load them with the following code
69
+ ```python
70
+ from datasets import load_dataset
71
 
72
+ # MQP:
73
+ dataset = load_dataset('medical_questions_pairs')
 
74
 
75
+ # PubmedQA:
76
+ dataset = load_dataset('bigbio/pubmed_qa')
 
 
77
 
78
+ # SCOTUS
79
+ dataset = load_dataset("lex_glue", 'scotus')
80
 
81
+ # CaseHOLD
82
+ dataset = load_dataset("lex_glue", 'case_hold')
83
 
84
+ # UNFAIR-ToS
85
+ dataset = load_dataset("lex_glue", 'unfair_tos')
86
  ```
87
 
 
 
 
 
 
 
 
 
 
 
 
88
  ## Citation
89
  If you find our work helpful, please cite us:
90
  ```bibtex
 
98
  }
99
  ```
100
 
101
+ and the original dataset:
102
  ```bibtex
103
  @article{ChemProt,
104
  author = {Jens Kringelum and