File size: 7,827 Bytes
5146615
 
ecb41a2
5146615
57e1efe
 
5146615
 
57e1efe
 
5146615
 
57e1efe
 
5146615
 
57e1efe
 
5146615
 
57e1efe
 
b95ad2a
 
 
 
 
 
57e1efe
 
277fa86
 
e3ba226
 
2f7cff2
b95ad2a
2f7cff2
e3ba226
2f7cff2
b95ad2a
e3ba226
 
 
 
 
 
 
 
2f7cff2
b95ad2a
e3ba226
c2a4923
b95ad2a
2f7cff2
 
b95ad2a
2f7cff2
 
c2a4923
 
 
e3ba226
 
b95ad2a
e3ba226
f6611a5
b95ad2a
e3ba226
b95ad2a
e3ba226
7feed76
2f7cff2
40df24f
2f7cff2
e3ba226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7feed76
40df24f
 
 
 
7feed76
b95ad2a
 
277fa86
3ad1034
 
 
 
 
 
 
277fa86
b95ad2a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
---
configs:
- config_name: ConvFinQA
  data_files:
  - split: test
    path: ConviFinQA/test.json
- config_name: FiQA_SA
  data_files:
  - split: test
    path: FiQA_SA/test.json
- config_name: FPB
  data_files:
  - split: test
    path: FPB/test.json
- config_name: Headline
  data_files:
  - split: test
    path: Headline/test.json
- config_name: NER
  data_files:
  - split: test
    path: NER/test.json
task_categories:
- text-classification
- question-answering
- zero-shot-classification
language:
- en
tags:
- finance
---

# Adapting LLM to Domains (ICLR 2024)
This repo contains the **evaluation datasets** for our paper [Adapting Large Language Models via Reading Comprehension](https://huggingface.co/papers/2309.09530).

We explore **continued pre-training on domain-specific corpora** for large language models. While this approach enriches LLMs with domain knowledge, it significantly hurts their prompting ability for question answering. Inspired by human learning via reading comprehension, we propose a simple method to **transform large-scale pre-training corpora into reading comprehension texts**, consistently improving prompting performance across tasks in biomedicine, finance, and law domains. **Our 7B model competes with much larger domain-specific models like BloombergGPT-50B**. 

### [2024/6/21] 🤗 We release the 2nd version of AdaptLLM at [Instruction-Pretrain](https://huggingface.co/instruction-pretrain), effective for both pre-training from scratch and continual pre-training 🤗

**************************** **Updates** ****************************
* 2024/8/29: Updated [guidelines](https://huggingface.co/datasets/AdaptLLM/finance-tasks) on evaluating any 🤗Huggingface models on the domain-specific tasks
* 2024/6/22: Released the [benchmarking code](https://github.com/microsoft/LMOps/tree/main/adaptllm)
* 2024/6/21: Released the 2nd version of AdaptLLM at [Instruction-Pretrain](https://huggingface.co/instruction-pretrain)
* 2024/4/2: Released the [raw data splits (train and test)](https://huggingface.co/datasets/AdaptLLM/ConvFinQA) of all the evaluation datasets
* 2024/1/16: Our [research paper](https://huggingface.co/papers/2309.09530) has been accepted by ICLR 2024
* 2023/12/19: Released our [13B base models](https://huggingface.co/AdaptLLM/law-LLM-13B) developed from LLaMA-1-13B
* 2023/12/8: Released our [chat models](https://huggingface.co/AdaptLLM/law-chat) developed from LLaMA-2-Chat-7B
* 2023/9/18: Released our [paper](https://huggingface.co/papers/2309.09530), [code](https://github.com/microsoft/LMOps), [data](https://huggingface.co/datasets/AdaptLLM/law-tasks), and [base models](https://huggingface.co/AdaptLLM/law-LLM) developed from LLaMA-1-7B


## 1. Domain-Specific Models
### LLaMA-1-7B
In our paper, we develop three domain-specific models from LLaMA-1-7B, which are also available in Huggingface: [Biomedicine-LLM](https://huggingface.co/AdaptLLM/medicine-LLM), [Finance-LLM](https://huggingface.co/AdaptLLM/finance-LLM) and [Law-LLM](https://huggingface.co/AdaptLLM/law-LLM), the performances of our AdaptLLM compared to other domain-specific LLMs are:

<p align='center'>
    <img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/6efPwitFgy-pLTzvccdcP.png" width="700">
</p>

### LLaMA-1-13B
Moreover, we scale up our base model to LLaMA-1-13B to see if **our method is similarly effective for larger-scale models**, and the results are consistently positive too: [Biomedicine-LLM-13B](https://huggingface.co/AdaptLLM/medicine-LLM-13B), [Finance-LLM-13B](https://huggingface.co/AdaptLLM/finance-LLM-13B) and [Law-LLM-13B](https://huggingface.co/AdaptLLM/law-LLM-13B).

### LLaMA-2-Chat
Our method is also effective for aligned models! LLaMA-2-Chat requires a [specific data format](https://huggingface.co/blog/llama2#how-to-prompt-llama-2), and our **reading comprehension can perfectly fit the data format** by transforming the reading comprehension into a multi-turn conversation. We have also open-sourced chat models in different domains: [Biomedicine-Chat](https://huggingface.co/AdaptLLM/medicine-chat), [Finance-Chat](https://huggingface.co/AdaptLLM/finance-chat) and [Law-Chat](https://huggingface.co/AdaptLLM/law-chat).

### LLaMA-3-8B (💡New!)
In our recent research on [Instruction-Pretrain](https://huggingface.co/papers/2406.14491), we developed a context-based instruction synthesizer to augment the raw corpora with instruction-response pairs, **enabling Llama3-8B to be comparable to or even outperform Llama3-70B**: [Finance-Llama3-8B](https://huggingface.co/instruction-pretrain/finance-Llama3-8B), [Biomedicine-Llama3-8B](https://huggingface.co/instruction-pretrain/medicine-Llama3-8B).

## 2. Domain-Specific Tasks

### Pre-templatized Testing Splits
To easily reproduce our prompting results, we have uploaded the filled-in zero/few-shot input instructions and output completions of the test each domain-specific task: [biomedicine-tasks](https://huggingface.co/datasets/AdaptLLM/medicine-tasks), [finance-tasks](https://huggingface.co/datasets/AdaptLLM/finance-tasks), and [law-tasks](https://huggingface.co/datasets/AdaptLLM/law-tasks).

Note: those filled-in instructions are specifically tailored for models before alignment and do NOT fit for the specific data format required for chat models.

### Evaluating Any Huggingface LMs on Domain-Specific Tasks (💡New!)
You can use the following scripts to reproduce our results and evaluate any other Huggingface models on the testing splits:

1). **Set Up Dependencies**
   ```bash
   git clone https://github.com/microsoft/LMOps
   cd LMOps/adaptllm
   pip install -r requirements.txt
   ```

2). **Evaluate the Model**
   ```bash
   # Select the domain from ['biomedicine', 'finance', 'law']
   DOMAIN='finance'
  
   # Specify any Huggingface model name (Not applicable to chat models)
   MODEL='AdaptLLM/finance-LLM'
  
   # Model parallelization:
   # - Set MODEL_PARALLEL=False if the model fits on a single GPU. 
   #   We observe that LMs smaller than 10B always meet this requirement.
   # - Set MODEL_PARALLEL=True if the model is too large and encounters OOM on a single GPU.
   MODEL_PARALLEL=False
  
   # Choose the number of GPUs from [1, 2, 4, 8]
   N_GPU=1
  
   # Whether to add a BOS token at the beginning of the prompt input:
   # - Set to False for AdaptLLM.
   # - Set to True for instruction-pretrain models.
   # If unsure, we recommend setting it to False, as this is suitable for most LMs.
   add_bos_token=False

   # Run the evaluation script
   bash scripts/inference.sh ${DOMAIN} ${MODEL} ${add_bos_token} ${MODEL_PARALLEL} ${N_GPU}
   ```

### Raw Datasets
We have also uploaded the raw training and testing splits, for facilitating fine-tuning or other usages: [ChemProt](https://huggingface.co/datasets/AdaptLLM/ChemProt), [RCT](https://huggingface.co/datasets/AdaptLLM/RCT), [ConvFinQA](https://huggingface.co/datasets/AdaptLLM/ConvFinQA), [FiQA_SA](https://huggingface.co/datasets/AdaptLLM/FiQA_SA), [Headline](https://huggingface.co/datasets/AdaptLLM/Headline), [NER](https://huggingface.co/datasets/AdaptLLM/NER), [FPB](https://huggingface.co/datasets/AdaptLLM/FPB)

### Domain Knowledge Probing
Our pre-processed knowledge probing datasets are available at: [med_knowledge_prob](https://huggingface.co/datasets/AdaptLLM/med_knowledge_prob) and [law_knowledge_prob](https://huggingface.co/datasets/AdaptLLM/law_knowledge_prob)

## Citation
If you find our work helpful, please cite us:
```bibtex
@inproceedings{
cheng2024adapting,
title={Adapting Large Language Models via Reading Comprehension},
author={Daixuan Cheng and Shaohan Huang and Furu Wei},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=y886UXPEZ0}
}
```