AdaptLLM commited on
Commit
be6575d
·
verified ·
1 Parent(s): 3539d8f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -3
README.md CHANGED
@@ -41,17 +41,70 @@ We investigate domain adaptation of MLLMs through post-training, focusing on dat
41
  <img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/-Jp7pAsCR2Tj4WwfwsbCo.png" width="600">
42
  </p>
43
 
44
- ## How to use
45
 
 
 
46
  ```python
47
  from datasets import load_dataset
48
 
49
  # Choose the task name from the list of available tasks
50
- task_name = 'FoodSeg103' # Options: 'Food101', 'FoodSeg103', 'Nutrition5K', 'Recipe1M'
51
 
52
  # Load the dataset for the chosen task
53
  data = load_dataset('AdaptLLM/food-VQA-benchmark', task_name, split='test')
54
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
  ## Citation
57
  If you find our work helpful, please cite us.
 
41
  <img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/-Jp7pAsCR2Tj4WwfwsbCo.png" width="600">
42
  </p>
43
 
44
+ ## How to Use
45
 
46
+ ### Loading Data
47
+ You can load datasets using the `datasets` library:
48
  ```python
49
  from datasets import load_dataset
50
 
51
  # Choose the task name from the list of available tasks
52
+ task_name = 'FoodSeg103' # Options: 'Food101', 'FoodSeg103', 'Nutrition5K', 'Recipe1M'
53
 
54
  # Load the dataset for the chosen task
55
  data = load_dataset('AdaptLLM/food-VQA-benchmark', task_name, split='test')
56
+ ```
57
+
58
+ ### Mapping Categories to Indices
59
+ The mapping between category names and indices for `Food101`, `FoodSeg103`, and `Nutrition5K` datasets is provided in the following files:
60
+ - **Food101**: `food101_name_to_label_map.json`
61
+ - **FoodSeg103**: `foodSeg103_id2label.json`
62
+ - **Nutrition5K**: `nutrition5k_ingredients.py`
63
+
64
+ ### Examples of Usage
65
+
66
+ #### Food101
67
+ ```python
68
+ import json
69
+
70
+ # Load the mapping file
71
+ map_path = 'food101_name_to_label_map.json'
72
+ name_to_label_map = json.load(open(map_path))
73
+
74
+ # Reverse mapping: label to name
75
+ label_to_name_map = {value: key.replace('_', ' ') for key, value in name_to_label_map.items()}
76
+ ```
77
+
78
+ #### FoodSeg103
79
+ ```python
80
+ import json
81
+
82
+ # Load the mapping file
83
+ map_path = 'foodSeg103_id2label.json'
84
+ id2name_map = json.load(open(map_path))
85
+
86
+ # Remove background and irrelevant labels
87
+ id2name_map.pop("0") # Background
88
+ id2name_map.pop("103") # Other ingredients
89
+
90
+ # Convert keys to integers
91
+ id2name_map = {int(key): value for key, value in id2name_map.items()}
92
+
93
+ # Create reverse mapping: name to ID
94
+ name2id_map = {value: key for key, value in id2name_map.items()}
95
+ ```
96
+
97
+ #### Nutrition5K
98
+ ```python
99
+ from nutrition5k_ingredients import all_ingredients
100
+
101
+ # Create mappings
102
+ id2name_map = dict(zip(range(0, len(all_ingredients)), all_ingredients))
103
+ name2id_map = {value: key for key, value in id2name_map.items()}
104
+ ```
105
+
106
+
107
+
108
 
109
  ## Citation
110
  If you find our work helpful, please cite us.