File size: 4,311 Bytes
c7c6717 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
# coding=utf-8
# Copyright 2023 The BizzAI and HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
import csv
import os
import datasets
logger = datasets.logging.get_logger(__name__)
""" BizzBuddy AI Dataset"""
_CITATION = """\
@article{gerz2021multilingual,
title={Wake word data for Voice assistant trigger in English from spoken data},
author={Ahmed, Nicholas},
year={2023}
}
"""
_DESCRIPTION = """\
Wake is training and evaluation resource for wake word
detection task with spoken data. It covers the wake and not wake
intents collected from a multiple participants who agreed to contribute to the development
of the system on the wake word and the not wake words is a subset of the common voice and speech commands dataset.
"""
_ALL_CONFIGS = sorted([
"en-US"
])
_DESCRIPTION = "Wake is a dataset for the wake word detection task with spoken data."
_DATA_URL = "https://www.dropbox.com/scl/fi/s706vku3nhl0bebukkrbk/data.zip?rlkey=ju2hz6jvae5nmd3rfry27vzgx&dl=0"
class WakeConfig(datasets.BuilderConfig):
"""BuilderConfig for xtreme-s"""
def __init__(
self, name, description, data_url
):
super(WakeConfig, self).__init__(
name=self.name,
version=datasets.Version("1.0.0", ""),
description=self.description,
)
self.name = name
self.description = description
self.data_url = data_url
def _build_config(name):
return WakeConfig(
name=name,
description=_DESCRIPTION,
data_url=_DATA_URL,
)
class Minds14(datasets.GeneratorBasedBuilder):
DEFAULT_WRITER_BATCH_SIZE = 1000
BUILDER_CONFIGS = [_build_config(name) for name in _ALL_CONFIGS + ["all"]]
def _info(self):
task_templates = None
langs = _ALL_CONFIGS
features = datasets.Features(
{
"path": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=8_000),
"wake": datasets.ClassLabel(
names=[
0,
1,
]
),
"lang_id": datasets.ClassLabel(names=langs),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=("audio", "transcription"),
citation=_CITATION,
task_templates=task_templates,
)
def _split_generators(self, dl_manager):
langs = (
_ALL_CONFIGS
if self.config.name == "all"
else [self.config.name]
)
archive_path = dl_manager.download_and_extract(self.config.data_url)
audio_path = dl_manager.extract(
os.path.join(archive_path, "data", "data.rar")
)
text_path = dl_manager.extract(
os.path.join(archive_path, "data", "text.zip")
)
text_path = {l: os.path.join(text_path, f"{l}.csv") for l in langs}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"audio_path": audio_path,
"text_paths": text_path,
},
)
]
def _generate_examples(self, audio_path, text_paths):
key = 0
for lang in text_paths.keys():
text_path = text_paths[lang]
with open(text_path, encoding="utf-8") as csv_file:
csv_reader = csv.reader(csv_file, delimiter=",", skipinitialspace=True)
next(csv_reader)
for row in csv_reader:
file_path, intent_class = row
file_path = os.path.join(audio_path, *file_path.split("/"))
yield key, {
"path": file_path,
"audio": file_path,
"wake": intent_class,
"lang_id": _ALL_CONFIGS.index(lang),
}
key += 1
|