# coding=utf-8 # Copyright 2023 The BizzAI and HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # import csv import os import datasets logger = datasets.logging.get_logger(__name__) """ BizzBuddy AI Dataset""" _CITATION = """\ @article{gerz2021multilingual, title={Wake word data for Voice assistant trigger in English from spoken data}, author={Ahmed, Nicholas}, year={2023} } """ _DESCRIPTION = """\ Wake is training and evaluation resource for wake word detection task with spoken data. It covers the wake and not wake intents collected from a multiple participants who agreed to contribute to the development of the system on the wake word and the not wake words is a subset of the common voice and speech commands dataset. """ _ALL_CONFIGS = sorted([ "en-US" ]) _DESCRIPTION = "Wake is a dataset for the wake word detection task with spoken data." _DATA_URL = "https://www.dropbox.com/scl/fi/s706vku3nhl0bebukkrbk/data.zip?rlkey=ju2hz6jvae5nmd3rfry27vzgx&dl=0" class WakeConfig(datasets.BuilderConfig): """BuilderConfig for xtreme-s""" def __init__( self, name, description, data_url ): super(WakeConfig, self).__init__( name=self.name, version=datasets.Version("1.0.0", ""), description=self.description, ) self.name = name self.description = description self.data_url = data_url def _build_config(name): return WakeConfig( name=name, description=_DESCRIPTION, data_url=_DATA_URL, ) class Minds14(datasets.GeneratorBasedBuilder): DEFAULT_WRITER_BATCH_SIZE = 1000 BUILDER_CONFIGS = [_build_config(name) for name in _ALL_CONFIGS + ["all"]] def _info(self): task_templates = None langs = _ALL_CONFIGS features = datasets.Features( { "path": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=8_000), "wake": datasets.ClassLabel( names=[ 0, 1, ] ), "lang_id": datasets.ClassLabel(names=langs), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=("audio", "transcription"), citation=_CITATION, task_templates=task_templates, ) def _split_generators(self, dl_manager): langs = ( _ALL_CONFIGS if self.config.name == "all" else [self.config.name] ) archive_path = dl_manager.download_and_extract(self.config.data_url) audio_path = dl_manager.extract( os.path.join(archive_path, "data", "data.rar") ) text_path = dl_manager.extract( os.path.join(archive_path, "data", "text.zip") ) text_path = {l: os.path.join(text_path, f"{l}.csv") for l in langs} return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "audio_path": audio_path, "text_paths": text_path, }, ) ] def _generate_examples(self, audio_path, text_paths): key = 0 for lang in text_paths.keys(): text_path = text_paths[lang] with open(text_path, encoding="utf-8") as csv_file: csv_reader = csv.reader(csv_file, delimiter=",", skipinitialspace=True) next(csv_reader) for row in csv_reader: file_path, intent_class = row file_path = os.path.join(audio_path, *file_path.split("/")) yield key, { "path": file_path, "audio": file_path, "wake": intent_class, "lang_id": _ALL_CONFIGS.index(lang), } key += 1