code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
text
stringlengths
164
112k
def has_property(elem_to_parse, xpath): """ Parse xpath for any attribute reference "path/@attr" and check for root and presence of attribute. :return: True if xpath is present in the element along with any attribute referenced, otherwise False """ xroot, attr = get_xpath_tuple(xpath) if not xroot and not attr: return False elif not attr: return bool(get_elements_text(elem_to_parse, xroot)) else: return bool(get_elements_attributes(elem_to_parse, xroot, attr))
Parse xpath for any attribute reference "path/@attr" and check for root and presence of attribute. :return: True if xpath is present in the element along with any attribute referenced, otherwise False
Below is the the instruction that describes the task: ### Input: Parse xpath for any attribute reference "path/@attr" and check for root and presence of attribute. :return: True if xpath is present in the element along with any attribute referenced, otherwise False ### Response: def has_property(elem_to_parse, xpath): """ Parse xpath for any attribute reference "path/@attr" and check for root and presence of attribute. :return: True if xpath is present in the element along with any attribute referenced, otherwise False """ xroot, attr = get_xpath_tuple(xpath) if not xroot and not attr: return False elif not attr: return bool(get_elements_text(elem_to_parse, xroot)) else: return bool(get_elements_attributes(elem_to_parse, xroot, attr))
def sci(x, digs): """Format x as [-]d.dddE[+-]ddd with 'digs' digits after the point and exactly one digit before. If digs is <= 0, one digit is kept and the point is suppressed.""" if type(x) != type(''): x = repr(x) sign, intpart, fraction, expo = extract(x) if not intpart: while fraction and fraction[0] == '0': fraction = fraction[1:] expo = expo - 1 if fraction: intpart, fraction = fraction[0], fraction[1:] expo = expo - 1 else: intpart = '0' else: expo = expo + len(intpart) - 1 intpart, fraction = intpart[0], intpart[1:] + fraction digs = max(0, digs) intpart, fraction = roundfrac(intpart, fraction, digs) if len(intpart) > 1: intpart, fraction, expo = \ intpart[0], intpart[1:] + fraction[:-1], \ expo + len(intpart) - 1 s = sign + intpart if digs > 0: s = s + '.' + fraction e = repr(abs(expo)) e = '0'*(3-len(e)) + e if expo < 0: e = '-' + e else: e = '+' + e return s + 'e' + e
Format x as [-]d.dddE[+-]ddd with 'digs' digits after the point and exactly one digit before. If digs is <= 0, one digit is kept and the point is suppressed.
Below is the the instruction that describes the task: ### Input: Format x as [-]d.dddE[+-]ddd with 'digs' digits after the point and exactly one digit before. If digs is <= 0, one digit is kept and the point is suppressed. ### Response: def sci(x, digs): """Format x as [-]d.dddE[+-]ddd with 'digs' digits after the point and exactly one digit before. If digs is <= 0, one digit is kept and the point is suppressed.""" if type(x) != type(''): x = repr(x) sign, intpart, fraction, expo = extract(x) if not intpart: while fraction and fraction[0] == '0': fraction = fraction[1:] expo = expo - 1 if fraction: intpart, fraction = fraction[0], fraction[1:] expo = expo - 1 else: intpart = '0' else: expo = expo + len(intpart) - 1 intpart, fraction = intpart[0], intpart[1:] + fraction digs = max(0, digs) intpart, fraction = roundfrac(intpart, fraction, digs) if len(intpart) > 1: intpart, fraction, expo = \ intpart[0], intpart[1:] + fraction[:-1], \ expo + len(intpart) - 1 s = sign + intpart if digs > 0: s = s + '.' + fraction e = repr(abs(expo)) e = '0'*(3-len(e)) + e if expo < 0: e = '-' + e else: e = '+' + e return s + 'e' + e
def set_iter_mesh(self, mesh, shift=None, is_time_reversal=True, is_mesh_symmetry=True, is_eigenvectors=False, is_gamma_center=False): """Create an IterMesh instancer Attributes ---------- See set_mesh method. """ warnings.warn("Phonopy.set_iter_mesh is deprecated. " "Use Phonopy.run_mesh with use_iter_mesh=True.", DeprecationWarning) self.run_mesh(mesh=mesh, shift=shift, is_time_reversal=is_time_reversal, is_mesh_symmetry=is_mesh_symmetry, with_eigenvectors=is_eigenvectors, is_gamma_center=is_gamma_center, use_iter_mesh=True)
Create an IterMesh instancer Attributes ---------- See set_mesh method.
Below is the the instruction that describes the task: ### Input: Create an IterMesh instancer Attributes ---------- See set_mesh method. ### Response: def set_iter_mesh(self, mesh, shift=None, is_time_reversal=True, is_mesh_symmetry=True, is_eigenvectors=False, is_gamma_center=False): """Create an IterMesh instancer Attributes ---------- See set_mesh method. """ warnings.warn("Phonopy.set_iter_mesh is deprecated. " "Use Phonopy.run_mesh with use_iter_mesh=True.", DeprecationWarning) self.run_mesh(mesh=mesh, shift=shift, is_time_reversal=is_time_reversal, is_mesh_symmetry=is_mesh_symmetry, with_eigenvectors=is_eigenvectors, is_gamma_center=is_gamma_center, use_iter_mesh=True)
def find_rt_jar(javahome=None): """Find the path to the Java standard library jar. The jar is expected to exist at the path 'jre/lib/rt.jar' inside a standard Java installation directory. The directory is found using the following procedure: 1. If the javehome argument is provided, use the value as the directory. 2. If the JAVA_HOME environment variable is set, use the value as the directory. 3. Find the location of the ``java`` binary in the current PATH and compute the installation directory from this location. Args: javahome: A path to a Java installation directory (optional). """ if not javahome: if 'JAVA_HOME' in os.environ: javahome = os.environ['JAVA_HOME'] elif sys.platform == 'darwin': # The default java binary on OS X is not part of a standard Oracle # install, so building paths relative to it does not work like it # does on other platforms. javahome = _find_osx_javahome() else: javahome = _get_javahome_from_java(_find_java_binary()) rtpath = os.path.join(javahome, 'jre', 'lib', 'rt.jar') if not os.path.isfile(rtpath): msg = 'Could not find rt.jar: {} is not a file'.format(rtpath) raise ExtensionError(msg) return rtpath
Find the path to the Java standard library jar. The jar is expected to exist at the path 'jre/lib/rt.jar' inside a standard Java installation directory. The directory is found using the following procedure: 1. If the javehome argument is provided, use the value as the directory. 2. If the JAVA_HOME environment variable is set, use the value as the directory. 3. Find the location of the ``java`` binary in the current PATH and compute the installation directory from this location. Args: javahome: A path to a Java installation directory (optional).
Below is the the instruction that describes the task: ### Input: Find the path to the Java standard library jar. The jar is expected to exist at the path 'jre/lib/rt.jar' inside a standard Java installation directory. The directory is found using the following procedure: 1. If the javehome argument is provided, use the value as the directory. 2. If the JAVA_HOME environment variable is set, use the value as the directory. 3. Find the location of the ``java`` binary in the current PATH and compute the installation directory from this location. Args: javahome: A path to a Java installation directory (optional). ### Response: def find_rt_jar(javahome=None): """Find the path to the Java standard library jar. The jar is expected to exist at the path 'jre/lib/rt.jar' inside a standard Java installation directory. The directory is found using the following procedure: 1. If the javehome argument is provided, use the value as the directory. 2. If the JAVA_HOME environment variable is set, use the value as the directory. 3. Find the location of the ``java`` binary in the current PATH and compute the installation directory from this location. Args: javahome: A path to a Java installation directory (optional). """ if not javahome: if 'JAVA_HOME' in os.environ: javahome = os.environ['JAVA_HOME'] elif sys.platform == 'darwin': # The default java binary on OS X is not part of a standard Oracle # install, so building paths relative to it does not work like it # does on other platforms. javahome = _find_osx_javahome() else: javahome = _get_javahome_from_java(_find_java_binary()) rtpath = os.path.join(javahome, 'jre', 'lib', 'rt.jar') if not os.path.isfile(rtpath): msg = 'Could not find rt.jar: {} is not a file'.format(rtpath) raise ExtensionError(msg) return rtpath
def show_raslog_output_show_all_raslog_raslog_entries_log_type(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") show_raslog = ET.Element("show_raslog") config = show_raslog output = ET.SubElement(show_raslog, "output") show_all_raslog = ET.SubElement(output, "show-all-raslog") raslog_entries = ET.SubElement(show_all_raslog, "raslog-entries") log_type = ET.SubElement(raslog_entries, "log-type") log_type.text = kwargs.pop('log_type') callback = kwargs.pop('callback', self._callback) return callback(config)
Auto Generated Code
Below is the the instruction that describes the task: ### Input: Auto Generated Code ### Response: def show_raslog_output_show_all_raslog_raslog_entries_log_type(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") show_raslog = ET.Element("show_raslog") config = show_raslog output = ET.SubElement(show_raslog, "output") show_all_raslog = ET.SubElement(output, "show-all-raslog") raslog_entries = ET.SubElement(show_all_raslog, "raslog-entries") log_type = ET.SubElement(raslog_entries, "log-type") log_type.text = kwargs.pop('log_type') callback = kwargs.pop('callback', self._callback) return callback(config)
def deep_align(objects, join='inner', copy=True, indexes=None, exclude=frozenset(), raise_on_invalid=True): """Align objects for merging, recursing into dictionary values. This function is not public API. """ from .dataarray import DataArray from .dataset import Dataset if indexes is None: indexes = {} def is_alignable(obj): return isinstance(obj, (DataArray, Dataset)) positions = [] keys = [] out = [] targets = [] no_key = object() not_replaced = object() for n, variables in enumerate(objects): if is_alignable(variables): positions.append(n) keys.append(no_key) targets.append(variables) out.append(not_replaced) elif is_dict_like(variables): for k, v in variables.items(): if is_alignable(v) and k not in indexes: # Skip variables in indexes for alignment, because these # should to be overwritten instead: # https://github.com/pydata/xarray/issues/725 positions.append(n) keys.append(k) targets.append(v) out.append(OrderedDict(variables)) elif raise_on_invalid: raise ValueError('object to align is neither an xarray.Dataset, ' 'an xarray.DataArray nor a dictionary: %r' % variables) else: out.append(variables) aligned = align(*targets, join=join, copy=copy, indexes=indexes, exclude=exclude) for position, key, aligned_obj in zip(positions, keys, aligned): if key is no_key: out[position] = aligned_obj else: out[position][key] = aligned_obj # something went wrong: we should have replaced all sentinel values assert all(arg is not not_replaced for arg in out) return out
Align objects for merging, recursing into dictionary values. This function is not public API.
Below is the the instruction that describes the task: ### Input: Align objects for merging, recursing into dictionary values. This function is not public API. ### Response: def deep_align(objects, join='inner', copy=True, indexes=None, exclude=frozenset(), raise_on_invalid=True): """Align objects for merging, recursing into dictionary values. This function is not public API. """ from .dataarray import DataArray from .dataset import Dataset if indexes is None: indexes = {} def is_alignable(obj): return isinstance(obj, (DataArray, Dataset)) positions = [] keys = [] out = [] targets = [] no_key = object() not_replaced = object() for n, variables in enumerate(objects): if is_alignable(variables): positions.append(n) keys.append(no_key) targets.append(variables) out.append(not_replaced) elif is_dict_like(variables): for k, v in variables.items(): if is_alignable(v) and k not in indexes: # Skip variables in indexes for alignment, because these # should to be overwritten instead: # https://github.com/pydata/xarray/issues/725 positions.append(n) keys.append(k) targets.append(v) out.append(OrderedDict(variables)) elif raise_on_invalid: raise ValueError('object to align is neither an xarray.Dataset, ' 'an xarray.DataArray nor a dictionary: %r' % variables) else: out.append(variables) aligned = align(*targets, join=join, copy=copy, indexes=indexes, exclude=exclude) for position, key, aligned_obj in zip(positions, keys, aligned): if key is no_key: out[position] = aligned_obj else: out[position][key] = aligned_obj # something went wrong: we should have replaced all sentinel values assert all(arg is not not_replaced for arg in out) return out
def _apply_user_port_channel_config(self, nexus_host, vpc_nbr): """Adds STP and no lacp suspend config to port channel. """ cli_cmds = self._get_user_port_channel_config(nexus_host, vpc_nbr) if cli_cmds: self._send_cli_conf_string(nexus_host, cli_cmds) else: vpc_str = str(vpc_nbr) path_snip = snipp.PATH_ALL body_snip = snipp.BODY_ADD_PORT_CH_P2 % (vpc_str, vpc_str) self.send_edit_string(nexus_host, path_snip, body_snip)
Adds STP and no lacp suspend config to port channel.
Below is the the instruction that describes the task: ### Input: Adds STP and no lacp suspend config to port channel. ### Response: def _apply_user_port_channel_config(self, nexus_host, vpc_nbr): """Adds STP and no lacp suspend config to port channel. """ cli_cmds = self._get_user_port_channel_config(nexus_host, vpc_nbr) if cli_cmds: self._send_cli_conf_string(nexus_host, cli_cmds) else: vpc_str = str(vpc_nbr) path_snip = snipp.PATH_ALL body_snip = snipp.BODY_ADD_PORT_CH_P2 % (vpc_str, vpc_str) self.send_edit_string(nexus_host, path_snip, body_snip)
def ajModeles(self): """ Lecture des modèles, et enregistrement de leurs désinences """ sl = [] lines = [line for line in lignesFichier(self.path("modeles.la"))] max = len(lines) - 1 for i, l in enumerate(lines): if l.startswith('$'): varname, value = tuple(l.split("=")) self.lemmatiseur._variables[varname] = value continue eclats = l.split(":") if (eclats[0] == "modele" or i == max) and len(sl) > 0: m = self.parse_modele(sl) self.register_modele(m) sl = [] sl.append(l)
Lecture des modèles, et enregistrement de leurs désinences
Below is the the instruction that describes the task: ### Input: Lecture des modèles, et enregistrement de leurs désinences ### Response: def ajModeles(self): """ Lecture des modèles, et enregistrement de leurs désinences """ sl = [] lines = [line for line in lignesFichier(self.path("modeles.la"))] max = len(lines) - 1 for i, l in enumerate(lines): if l.startswith('$'): varname, value = tuple(l.split("=")) self.lemmatiseur._variables[varname] = value continue eclats = l.split(":") if (eclats[0] == "modele" or i == max) and len(sl) > 0: m = self.parse_modele(sl) self.register_modele(m) sl = [] sl.append(l)
def from_header(self, binary): """Generate a SpanContext object using the trace context header. The value of enabled parsed from header is int. Need to convert to bool. :type binary: bytes :param binary: Trace context header which was extracted from the request headers. :rtype: :class:`~opencensus.trace.span_context.SpanContext` :returns: SpanContext generated from the trace context header. """ # If no binary provided, generate a new SpanContext if binary is None: return span_context_module.SpanContext(from_header=False) # If cannot parse, return a new SpanContext and ignore the context # from binary. try: data = Header._make(struct.unpack(BINARY_FORMAT, binary)) except struct.error: logging.warning( 'Cannot parse the incoming binary data {}, ' 'wrong format. Total bytes length should be {}.'.format( binary, FORMAT_LENGTH ) ) return span_context_module.SpanContext(from_header=False) # data.trace_id is in bytes with length 16, hexlify it to hex bytes # with length 32, then decode it to hex string using utf-8. trace_id = str(binascii.hexlify(data.trace_id).decode(UTF8)) span_id = str(binascii.hexlify(data.span_id).decode(UTF8)) trace_options = TraceOptions(data.trace_option) span_context = span_context_module.SpanContext( trace_id=trace_id, span_id=span_id, trace_options=trace_options, from_header=True) return span_context
Generate a SpanContext object using the trace context header. The value of enabled parsed from header is int. Need to convert to bool. :type binary: bytes :param binary: Trace context header which was extracted from the request headers. :rtype: :class:`~opencensus.trace.span_context.SpanContext` :returns: SpanContext generated from the trace context header.
Below is the the instruction that describes the task: ### Input: Generate a SpanContext object using the trace context header. The value of enabled parsed from header is int. Need to convert to bool. :type binary: bytes :param binary: Trace context header which was extracted from the request headers. :rtype: :class:`~opencensus.trace.span_context.SpanContext` :returns: SpanContext generated from the trace context header. ### Response: def from_header(self, binary): """Generate a SpanContext object using the trace context header. The value of enabled parsed from header is int. Need to convert to bool. :type binary: bytes :param binary: Trace context header which was extracted from the request headers. :rtype: :class:`~opencensus.trace.span_context.SpanContext` :returns: SpanContext generated from the trace context header. """ # If no binary provided, generate a new SpanContext if binary is None: return span_context_module.SpanContext(from_header=False) # If cannot parse, return a new SpanContext and ignore the context # from binary. try: data = Header._make(struct.unpack(BINARY_FORMAT, binary)) except struct.error: logging.warning( 'Cannot parse the incoming binary data {}, ' 'wrong format. Total bytes length should be {}.'.format( binary, FORMAT_LENGTH ) ) return span_context_module.SpanContext(from_header=False) # data.trace_id is in bytes with length 16, hexlify it to hex bytes # with length 32, then decode it to hex string using utf-8. trace_id = str(binascii.hexlify(data.trace_id).decode(UTF8)) span_id = str(binascii.hexlify(data.span_id).decode(UTF8)) trace_options = TraceOptions(data.trace_option) span_context = span_context_module.SpanContext( trace_id=trace_id, span_id=span_id, trace_options=trace_options, from_header=True) return span_context
def mk_class_name(*parts): """Create a valid class name from a list of strings.""" cap = lambda s: s and (s[0].capitalize() + s[1:]) return "".join(["".join([cap(i) for i in re.split("[\ \-\_\.]", str(p))]) for p in parts])
Create a valid class name from a list of strings.
Below is the the instruction that describes the task: ### Input: Create a valid class name from a list of strings. ### Response: def mk_class_name(*parts): """Create a valid class name from a list of strings.""" cap = lambda s: s and (s[0].capitalize() + s[1:]) return "".join(["".join([cap(i) for i in re.split("[\ \-\_\.]", str(p))]) for p in parts])
def send_command_return(self, obj, command, *arguments): """ Send command with single line output. :param obj: requested object. :param command: command to send. :param arguments: list of command arguments. :return: command output. """ return self._perform_command('{}/{}'.format(self.session_url, obj.ref), command, OperReturnType.line_output, *arguments).json()
Send command with single line output. :param obj: requested object. :param command: command to send. :param arguments: list of command arguments. :return: command output.
Below is the the instruction that describes the task: ### Input: Send command with single line output. :param obj: requested object. :param command: command to send. :param arguments: list of command arguments. :return: command output. ### Response: def send_command_return(self, obj, command, *arguments): """ Send command with single line output. :param obj: requested object. :param command: command to send. :param arguments: list of command arguments. :return: command output. """ return self._perform_command('{}/{}'.format(self.session_url, obj.ref), command, OperReturnType.line_output, *arguments).json()
def _get_clumpp_table(self, kpop, max_var_multiple, quiet): """ private function to clumpp results""" ## concat results for k=x reps, excluded = _concat_reps(self, kpop, max_var_multiple, quiet) if reps: ninds = reps[0].inds nreps = len(reps) else: ninds = nreps = 0 if not reps: return "no result files found" clumphandle = os.path.join(self.workdir, "tmp.clumppparams.txt") self.clumppparams.kpop = kpop self.clumppparams.c = ninds self.clumppparams.r = nreps with open(clumphandle, 'w') as tmp_c: tmp_c.write(self.clumppparams._asfile()) ## create CLUMPP args string outfile = os.path.join(self.workdir, "{}-K-{}.outfile".format(self.name, kpop)) indfile = os.path.join(self.workdir, "{}-K-{}.indfile".format(self.name, kpop)) miscfile = os.path.join(self.workdir, "{}-K-{}.miscfile".format(self.name, kpop)) cmd = ["CLUMPP", clumphandle, "-i", indfile, "-o", outfile, "-j", miscfile, "-r", str(nreps), "-c", str(ninds), "-k", str(kpop)] ## call clumpp proc = subprocess.Popen(cmd, stderr=subprocess.STDOUT, stdout=subprocess.PIPE) _ = proc.communicate() ## cleanup for rfile in [indfile, miscfile]: if os.path.exists(rfile): os.remove(rfile) ## parse clumpp results file ofile = os.path.join(self.workdir, "{}-K-{}.outfile".format(self.name, kpop)) if os.path.exists(ofile): csvtable = pd.read_csv(ofile, delim_whitespace=True, header=None) table = csvtable.loc[:, 5:] ## apply names to cols and rows table.columns = range(table.shape[1]) table.index = self.labels if not quiet: sys.stderr.write( "[K{}] {}/{} results permuted across replicates (max_var={}).\n"\ .format(kpop, nreps, nreps+excluded, max_var_multiple)) return table else: sys.stderr.write("No files ready for {}-K-{} in {}\n"\ .format(self.name, kpop, self.workdir)) return
private function to clumpp results
Below is the the instruction that describes the task: ### Input: private function to clumpp results ### Response: def _get_clumpp_table(self, kpop, max_var_multiple, quiet): """ private function to clumpp results""" ## concat results for k=x reps, excluded = _concat_reps(self, kpop, max_var_multiple, quiet) if reps: ninds = reps[0].inds nreps = len(reps) else: ninds = nreps = 0 if not reps: return "no result files found" clumphandle = os.path.join(self.workdir, "tmp.clumppparams.txt") self.clumppparams.kpop = kpop self.clumppparams.c = ninds self.clumppparams.r = nreps with open(clumphandle, 'w') as tmp_c: tmp_c.write(self.clumppparams._asfile()) ## create CLUMPP args string outfile = os.path.join(self.workdir, "{}-K-{}.outfile".format(self.name, kpop)) indfile = os.path.join(self.workdir, "{}-K-{}.indfile".format(self.name, kpop)) miscfile = os.path.join(self.workdir, "{}-K-{}.miscfile".format(self.name, kpop)) cmd = ["CLUMPP", clumphandle, "-i", indfile, "-o", outfile, "-j", miscfile, "-r", str(nreps), "-c", str(ninds), "-k", str(kpop)] ## call clumpp proc = subprocess.Popen(cmd, stderr=subprocess.STDOUT, stdout=subprocess.PIPE) _ = proc.communicate() ## cleanup for rfile in [indfile, miscfile]: if os.path.exists(rfile): os.remove(rfile) ## parse clumpp results file ofile = os.path.join(self.workdir, "{}-K-{}.outfile".format(self.name, kpop)) if os.path.exists(ofile): csvtable = pd.read_csv(ofile, delim_whitespace=True, header=None) table = csvtable.loc[:, 5:] ## apply names to cols and rows table.columns = range(table.shape[1]) table.index = self.labels if not quiet: sys.stderr.write( "[K{}] {}/{} results permuted across replicates (max_var={}).\n"\ .format(kpop, nreps, nreps+excluded, max_var_multiple)) return table else: sys.stderr.write("No files ready for {}-K-{} in {}\n"\ .format(self.name, kpop, self.workdir)) return
def to_element(self, include_namespaces=False): """Return an ElementTree Element representing this instance. Args: include_namespaces (bool, optional): If True, include xml namespace attributes on the root element Return: ~xml.etree.ElementTree.Element: an Element. """ elt_attrib = {} if include_namespaces: elt_attrib.update({ 'xmlns': "urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/", 'xmlns:dc': "http://purl.org/dc/elements/1.1/", 'xmlns:upnp': "urn:schemas-upnp-org:metadata-1-0/upnp/", }) elt_attrib.update({ 'parentID': self.parent_id, 'restricted': 'true' if self.restricted else 'false', 'id': self.item_id }) elt = XML.Element(self.tag, elt_attrib) # Add the title, which should always come first, according to the spec XML.SubElement(elt, 'dc:title').text = self.title # Add in any resources for resource in self.resources: elt.append(resource.to_element()) # Add the rest of the metadata attributes (i.e all those listed in # _translation) as sub-elements of the item element. for key, value in self._translation.items(): if hasattr(self, key): # Some attributes have a namespace of '', which means they # are in the default namespace. We need to handle those # carefully tag = "%s:%s" % value if value[0] else "%s" % value[1] XML.SubElement(elt, tag).text = ("%s" % getattr(self, key)) # Now add in the item class XML.SubElement(elt, 'upnp:class').text = self.item_class # And the desc element desc_attrib = {'id': 'cdudn', 'nameSpace': 'urn:schemas-rinconnetworks-com:metadata-1-0/'} desc_elt = XML.SubElement(elt, 'desc', desc_attrib) desc_elt.text = self.desc return elt
Return an ElementTree Element representing this instance. Args: include_namespaces (bool, optional): If True, include xml namespace attributes on the root element Return: ~xml.etree.ElementTree.Element: an Element.
Below is the the instruction that describes the task: ### Input: Return an ElementTree Element representing this instance. Args: include_namespaces (bool, optional): If True, include xml namespace attributes on the root element Return: ~xml.etree.ElementTree.Element: an Element. ### Response: def to_element(self, include_namespaces=False): """Return an ElementTree Element representing this instance. Args: include_namespaces (bool, optional): If True, include xml namespace attributes on the root element Return: ~xml.etree.ElementTree.Element: an Element. """ elt_attrib = {} if include_namespaces: elt_attrib.update({ 'xmlns': "urn:schemas-upnp-org:metadata-1-0/DIDL-Lite/", 'xmlns:dc': "http://purl.org/dc/elements/1.1/", 'xmlns:upnp': "urn:schemas-upnp-org:metadata-1-0/upnp/", }) elt_attrib.update({ 'parentID': self.parent_id, 'restricted': 'true' if self.restricted else 'false', 'id': self.item_id }) elt = XML.Element(self.tag, elt_attrib) # Add the title, which should always come first, according to the spec XML.SubElement(elt, 'dc:title').text = self.title # Add in any resources for resource in self.resources: elt.append(resource.to_element()) # Add the rest of the metadata attributes (i.e all those listed in # _translation) as sub-elements of the item element. for key, value in self._translation.items(): if hasattr(self, key): # Some attributes have a namespace of '', which means they # are in the default namespace. We need to handle those # carefully tag = "%s:%s" % value if value[0] else "%s" % value[1] XML.SubElement(elt, tag).text = ("%s" % getattr(self, key)) # Now add in the item class XML.SubElement(elt, 'upnp:class').text = self.item_class # And the desc element desc_attrib = {'id': 'cdudn', 'nameSpace': 'urn:schemas-rinconnetworks-com:metadata-1-0/'} desc_elt = XML.SubElement(elt, 'desc', desc_attrib) desc_elt.text = self.desc return elt
def log_variable_sizes(var_list=None, tag=None, verbose=False): """Log the sizes and shapes of variables, and the total size. Args: var_list: a list of variables; defaults to trainable_variables tag: a string; defaults to "Trainable Variables" verbose: bool, if True, log every weight; otherwise, log total size only. """ if var_list is None: var_list = tf.trainable_variables() if tag is None: tag = "Trainable Variables" if not var_list: return name_to_var = {v.name: v for v in var_list} total_size = 0 for v_name in sorted(list(name_to_var)): v = name_to_var[v_name] v_size = int(np.prod(np.array(v.shape.as_list()))) if verbose: tf.logging.info("Weight %s\tshape %s\tsize %d", v.name[:-2].ljust(80), str(v.shape).ljust(20), v_size) total_size += v_size tf.logging.info("%s Total size: %d", tag, total_size)
Log the sizes and shapes of variables, and the total size. Args: var_list: a list of variables; defaults to trainable_variables tag: a string; defaults to "Trainable Variables" verbose: bool, if True, log every weight; otherwise, log total size only.
Below is the the instruction that describes the task: ### Input: Log the sizes and shapes of variables, and the total size. Args: var_list: a list of variables; defaults to trainable_variables tag: a string; defaults to "Trainable Variables" verbose: bool, if True, log every weight; otherwise, log total size only. ### Response: def log_variable_sizes(var_list=None, tag=None, verbose=False): """Log the sizes and shapes of variables, and the total size. Args: var_list: a list of variables; defaults to trainable_variables tag: a string; defaults to "Trainable Variables" verbose: bool, if True, log every weight; otherwise, log total size only. """ if var_list is None: var_list = tf.trainable_variables() if tag is None: tag = "Trainable Variables" if not var_list: return name_to_var = {v.name: v for v in var_list} total_size = 0 for v_name in sorted(list(name_to_var)): v = name_to_var[v_name] v_size = int(np.prod(np.array(v.shape.as_list()))) if verbose: tf.logging.info("Weight %s\tshape %s\tsize %d", v.name[:-2].ljust(80), str(v.shape).ljust(20), v_size) total_size += v_size tf.logging.info("%s Total size: %d", tag, total_size)
def logpdf_link(self, inv_link_f, y, Y_metadata=None): """ Log Likelihood Function given link(f) .. math:: \\ln p(y_{i}|\lambda(f_{i})) = \\ln \\Gamma\\left(\\frac{v+1}{2}\\right) - \\ln \\Gamma\\left(\\frac{v}{2}\\right) - \\ln \\sqrt{v \\pi\\sigma^{2}} - \\frac{v+1}{2}\\ln \\left(1 + \\frac{1}{v}\\left(\\frac{(y_{i} - \lambda(f_{i}))^{2}}{\\sigma^{2}}\\right)\\right) :param inv_link_f: latent variables (link(f)) :type inv_link_f: Nx1 array :param y: data :type y: Nx1 array :param Y_metadata: Y_metadata which is not used in student t distribution :returns: likelihood evaluated for this point :rtype: float """ e = y - inv_link_f #FIXME: #Why does np.log(1 + (1/self.v)*((y-inv_link_f)**2)/self.sigma2) suppress the divide by zero?! #But np.log(1 + (1/float(self.v))*((y-inv_link_f)**2)/self.sigma2) throws it correctly #print - 0.5*(self.v + 1)*np.log(1 + (1/np.float(self.v))*((e**2)/self.sigma2)) objective = (+ gammaln((self.v + 1) * 0.5) - gammaln(self.v * 0.5) - 0.5*np.log(self.sigma2 * self.v * np.pi) - 0.5*(self.v + 1)*np.log(1 + (1/np.float(self.v))*((e**2)/self.sigma2)) ) return objective
Log Likelihood Function given link(f) .. math:: \\ln p(y_{i}|\lambda(f_{i})) = \\ln \\Gamma\\left(\\frac{v+1}{2}\\right) - \\ln \\Gamma\\left(\\frac{v}{2}\\right) - \\ln \\sqrt{v \\pi\\sigma^{2}} - \\frac{v+1}{2}\\ln \\left(1 + \\frac{1}{v}\\left(\\frac{(y_{i} - \lambda(f_{i}))^{2}}{\\sigma^{2}}\\right)\\right) :param inv_link_f: latent variables (link(f)) :type inv_link_f: Nx1 array :param y: data :type y: Nx1 array :param Y_metadata: Y_metadata which is not used in student t distribution :returns: likelihood evaluated for this point :rtype: float
Below is the the instruction that describes the task: ### Input: Log Likelihood Function given link(f) .. math:: \\ln p(y_{i}|\lambda(f_{i})) = \\ln \\Gamma\\left(\\frac{v+1}{2}\\right) - \\ln \\Gamma\\left(\\frac{v}{2}\\right) - \\ln \\sqrt{v \\pi\\sigma^{2}} - \\frac{v+1}{2}\\ln \\left(1 + \\frac{1}{v}\\left(\\frac{(y_{i} - \lambda(f_{i}))^{2}}{\\sigma^{2}}\\right)\\right) :param inv_link_f: latent variables (link(f)) :type inv_link_f: Nx1 array :param y: data :type y: Nx1 array :param Y_metadata: Y_metadata which is not used in student t distribution :returns: likelihood evaluated for this point :rtype: float ### Response: def logpdf_link(self, inv_link_f, y, Y_metadata=None): """ Log Likelihood Function given link(f) .. math:: \\ln p(y_{i}|\lambda(f_{i})) = \\ln \\Gamma\\left(\\frac{v+1}{2}\\right) - \\ln \\Gamma\\left(\\frac{v}{2}\\right) - \\ln \\sqrt{v \\pi\\sigma^{2}} - \\frac{v+1}{2}\\ln \\left(1 + \\frac{1}{v}\\left(\\frac{(y_{i} - \lambda(f_{i}))^{2}}{\\sigma^{2}}\\right)\\right) :param inv_link_f: latent variables (link(f)) :type inv_link_f: Nx1 array :param y: data :type y: Nx1 array :param Y_metadata: Y_metadata which is not used in student t distribution :returns: likelihood evaluated for this point :rtype: float """ e = y - inv_link_f #FIXME: #Why does np.log(1 + (1/self.v)*((y-inv_link_f)**2)/self.sigma2) suppress the divide by zero?! #But np.log(1 + (1/float(self.v))*((y-inv_link_f)**2)/self.sigma2) throws it correctly #print - 0.5*(self.v + 1)*np.log(1 + (1/np.float(self.v))*((e**2)/self.sigma2)) objective = (+ gammaln((self.v + 1) * 0.5) - gammaln(self.v * 0.5) - 0.5*np.log(self.sigma2 * self.v * np.pi) - 0.5*(self.v + 1)*np.log(1 + (1/np.float(self.v))*((e**2)/self.sigma2)) ) return objective
def template_delete(call=None, kwargs=None): ''' Deletes the given template from OpenNebula. Either a name or a template_id must be supplied. .. versionadded:: 2016.3.0 name The name of the template to delete. Can be used instead of ``template_id``. template_id The ID of the template to delete. Can be used instead of ``name``. CLI Example: .. code-block:: bash salt-cloud -f template_delete opennebula name=my-template salt-cloud --function template_delete opennebula template_id=5 ''' if call != 'function': raise SaltCloudSystemExit( 'The template_delete function must be called with -f or --function.' ) if kwargs is None: kwargs = {} name = kwargs.get('name', None) template_id = kwargs.get('template_id', None) if template_id: if name: log.warning( 'Both the \'template_id\' and \'name\' arguments were provided. ' '\'template_id\' will take precedence.' ) elif name: template_id = get_template_id(kwargs={'name': name}) else: raise SaltCloudSystemExit( 'The template_delete function requires either a \'name\' or a \'template_id\' ' 'to be provided.' ) server, user, password = _get_xml_rpc() auth = ':'.join([user, password]) response = server.one.template.delete(auth, int(template_id)) data = { 'action': 'template.delete', 'deleted': response[0], 'template_id': response[1], 'error_code': response[2], } return data
Deletes the given template from OpenNebula. Either a name or a template_id must be supplied. .. versionadded:: 2016.3.0 name The name of the template to delete. Can be used instead of ``template_id``. template_id The ID of the template to delete. Can be used instead of ``name``. CLI Example: .. code-block:: bash salt-cloud -f template_delete opennebula name=my-template salt-cloud --function template_delete opennebula template_id=5
Below is the the instruction that describes the task: ### Input: Deletes the given template from OpenNebula. Either a name or a template_id must be supplied. .. versionadded:: 2016.3.0 name The name of the template to delete. Can be used instead of ``template_id``. template_id The ID of the template to delete. Can be used instead of ``name``. CLI Example: .. code-block:: bash salt-cloud -f template_delete opennebula name=my-template salt-cloud --function template_delete opennebula template_id=5 ### Response: def template_delete(call=None, kwargs=None): ''' Deletes the given template from OpenNebula. Either a name or a template_id must be supplied. .. versionadded:: 2016.3.0 name The name of the template to delete. Can be used instead of ``template_id``. template_id The ID of the template to delete. Can be used instead of ``name``. CLI Example: .. code-block:: bash salt-cloud -f template_delete opennebula name=my-template salt-cloud --function template_delete opennebula template_id=5 ''' if call != 'function': raise SaltCloudSystemExit( 'The template_delete function must be called with -f or --function.' ) if kwargs is None: kwargs = {} name = kwargs.get('name', None) template_id = kwargs.get('template_id', None) if template_id: if name: log.warning( 'Both the \'template_id\' and \'name\' arguments were provided. ' '\'template_id\' will take precedence.' ) elif name: template_id = get_template_id(kwargs={'name': name}) else: raise SaltCloudSystemExit( 'The template_delete function requires either a \'name\' or a \'template_id\' ' 'to be provided.' ) server, user, password = _get_xml_rpc() auth = ':'.join([user, password]) response = server.one.template.delete(auth, int(template_id)) data = { 'action': 'template.delete', 'deleted': response[0], 'template_id': response[1], 'error_code': response[2], } return data
def instance_attr_ancestors(self, name, context=None): """Iterate over the parents that define the given name as an attribute. :param name: The name to find definitions for. :type name: str :returns: The parents that define the given name as an instance attribute. :rtype: iterable(NodeNG) """ for astroid in self.ancestors(context=context): if name in astroid.instance_attrs: yield astroid
Iterate over the parents that define the given name as an attribute. :param name: The name to find definitions for. :type name: str :returns: The parents that define the given name as an instance attribute. :rtype: iterable(NodeNG)
Below is the the instruction that describes the task: ### Input: Iterate over the parents that define the given name as an attribute. :param name: The name to find definitions for. :type name: str :returns: The parents that define the given name as an instance attribute. :rtype: iterable(NodeNG) ### Response: def instance_attr_ancestors(self, name, context=None): """Iterate over the parents that define the given name as an attribute. :param name: The name to find definitions for. :type name: str :returns: The parents that define the given name as an instance attribute. :rtype: iterable(NodeNG) """ for astroid in self.ancestors(context=context): if name in astroid.instance_attrs: yield astroid
def OnUpdate(self, event): """Updates the toolbar states""" # Gray out undo and redo id not available undo_toolid = self.label2id["Undo"] redo_toolid = self.label2id["Redo"] self.EnableTool(undo_toolid, undo.stack().canundo()) self.EnableTool(redo_toolid, undo.stack().canredo()) # Set ToolTip strings to potential next undo / redo action undotext = undo.stack().undotext() undo_tool = self.FindTool(undo_toolid) if undotext is None: undo_tool.SetShortHelp(_("No undo actions available")) else: undo_tool.SetShortHelp(undotext) redotext = undo.stack().redotext() redo_tool = self.FindTool(redo_toolid) if redotext is None: redo_tool.SetShortHelp(_("No redo actions available")) else: redo_tool.SetShortHelp(redotext) self.Refresh() event.Skip()
Updates the toolbar states
Below is the the instruction that describes the task: ### Input: Updates the toolbar states ### Response: def OnUpdate(self, event): """Updates the toolbar states""" # Gray out undo and redo id not available undo_toolid = self.label2id["Undo"] redo_toolid = self.label2id["Redo"] self.EnableTool(undo_toolid, undo.stack().canundo()) self.EnableTool(redo_toolid, undo.stack().canredo()) # Set ToolTip strings to potential next undo / redo action undotext = undo.stack().undotext() undo_tool = self.FindTool(undo_toolid) if undotext is None: undo_tool.SetShortHelp(_("No undo actions available")) else: undo_tool.SetShortHelp(undotext) redotext = undo.stack().redotext() redo_tool = self.FindTool(redo_toolid) if redotext is None: redo_tool.SetShortHelp(_("No redo actions available")) else: redo_tool.SetShortHelp(redotext) self.Refresh() event.Skip()
def _item_to_document_ref(iterator, item): """Convert Document resource to document ref. Args: iterator (google.api_core.page_iterator.GRPCIterator): iterator response item (dict): document resource """ document_id = item.name.split(_helpers.DOCUMENT_PATH_DELIMITER)[-1] return iterator.collection.document(document_id)
Convert Document resource to document ref. Args: iterator (google.api_core.page_iterator.GRPCIterator): iterator response item (dict): document resource
Below is the the instruction that describes the task: ### Input: Convert Document resource to document ref. Args: iterator (google.api_core.page_iterator.GRPCIterator): iterator response item (dict): document resource ### Response: def _item_to_document_ref(iterator, item): """Convert Document resource to document ref. Args: iterator (google.api_core.page_iterator.GRPCIterator): iterator response item (dict): document resource """ document_id = item.name.split(_helpers.DOCUMENT_PATH_DELIMITER)[-1] return iterator.collection.document(document_id)
def deserialize_duration(attr): """Deserialize ISO-8601 formatted string into TimeDelta object. :param str attr: response string to be deserialized. :rtype: TimeDelta :raises: DeserializationError if string format invalid. """ if isinstance(attr, ET.Element): attr = attr.text try: duration = isodate.parse_duration(attr) except(ValueError, OverflowError, AttributeError) as err: msg = "Cannot deserialize duration object." raise_with_traceback(DeserializationError, msg, err) else: return duration
Deserialize ISO-8601 formatted string into TimeDelta object. :param str attr: response string to be deserialized. :rtype: TimeDelta :raises: DeserializationError if string format invalid.
Below is the the instruction that describes the task: ### Input: Deserialize ISO-8601 formatted string into TimeDelta object. :param str attr: response string to be deserialized. :rtype: TimeDelta :raises: DeserializationError if string format invalid. ### Response: def deserialize_duration(attr): """Deserialize ISO-8601 formatted string into TimeDelta object. :param str attr: response string to be deserialized. :rtype: TimeDelta :raises: DeserializationError if string format invalid. """ if isinstance(attr, ET.Element): attr = attr.text try: duration = isodate.parse_duration(attr) except(ValueError, OverflowError, AttributeError) as err: msg = "Cannot deserialize duration object." raise_with_traceback(DeserializationError, msg, err) else: return duration
def create_model_schema(target_model): """ This function creates a graphql schema that provides a single model """ from nautilus.database import db # create the schema instance schema = graphene.Schema(auto_camelcase=False) # grab the primary key from the model primary_key = target_model.primary_key() primary_key_type = convert_peewee_field(primary_key) # create a graphene object class ModelObjectType(PeeweeObjectType): class Meta: model = target_model pk = Field(primary_key_type, description="The primary key for this object.") @graphene.resolve_only_args def resolve_pk(self): return getattr(self, self.primary_key().name) class Query(graphene.ObjectType): """ the root level query """ all_models = List(ModelObjectType, args=args_for_model(target_model)) @graphene.resolve_only_args def resolve_all_models(self, **args): # filter the model query according to the arguments # print(filter_model(target_model, args)[0].__dict__) return filter_model(target_model, args) # add the query to the schema schema.query = Query return schema
This function creates a graphql schema that provides a single model
Below is the the instruction that describes the task: ### Input: This function creates a graphql schema that provides a single model ### Response: def create_model_schema(target_model): """ This function creates a graphql schema that provides a single model """ from nautilus.database import db # create the schema instance schema = graphene.Schema(auto_camelcase=False) # grab the primary key from the model primary_key = target_model.primary_key() primary_key_type = convert_peewee_field(primary_key) # create a graphene object class ModelObjectType(PeeweeObjectType): class Meta: model = target_model pk = Field(primary_key_type, description="The primary key for this object.") @graphene.resolve_only_args def resolve_pk(self): return getattr(self, self.primary_key().name) class Query(graphene.ObjectType): """ the root level query """ all_models = List(ModelObjectType, args=args_for_model(target_model)) @graphene.resolve_only_args def resolve_all_models(self, **args): # filter the model query according to the arguments # print(filter_model(target_model, args)[0].__dict__) return filter_model(target_model, args) # add the query to the schema schema.query = Query return schema
def is_valid_cidr(string_network): """ Very simple check of the cidr format in no_proxy variable. :rtype: bool """ if string_network.count('/') == 1: try: mask = int(string_network.split('/')[1]) except ValueError: return False if mask < 1 or mask > 32: return False try: socket.inet_aton(string_network.split('/')[0]) except socket.error: return False else: return False return True
Very simple check of the cidr format in no_proxy variable. :rtype: bool
Below is the the instruction that describes the task: ### Input: Very simple check of the cidr format in no_proxy variable. :rtype: bool ### Response: def is_valid_cidr(string_network): """ Very simple check of the cidr format in no_proxy variable. :rtype: bool """ if string_network.count('/') == 1: try: mask = int(string_network.split('/')[1]) except ValueError: return False if mask < 1 or mask > 32: return False try: socket.inet_aton(string_network.split('/')[0]) except socket.error: return False else: return False return True
def vlan_dot1q_tag_native(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") vlan = ET.SubElement(config, "vlan", xmlns="urn:brocade.com:mgmt:brocade-vlan") dot1q = ET.SubElement(vlan, "dot1q") tag = ET.SubElement(dot1q, "tag") native = ET.SubElement(tag, "native") callback = kwargs.pop('callback', self._callback) return callback(config)
Auto Generated Code
Below is the the instruction that describes the task: ### Input: Auto Generated Code ### Response: def vlan_dot1q_tag_native(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") vlan = ET.SubElement(config, "vlan", xmlns="urn:brocade.com:mgmt:brocade-vlan") dot1q = ET.SubElement(vlan, "dot1q") tag = ET.SubElement(dot1q, "tag") native = ET.SubElement(tag, "native") callback = kwargs.pop('callback', self._callback) return callback(config)
def append(self, data_frame): """ Append another DataFrame to this DataFrame. If the new data_frame has columns that are not in the current DataFrame then new columns will be created. All of the indexes in the data_frame must be different from the current indexes or will raise an error. :param data_frame: DataFrame to append :return: nothing """ if len(data_frame) == 0: # empty DataFrame, do nothing return data_frame_index = data_frame.index combined_index = self._index + data_frame_index if len(set(combined_index)) != len(combined_index): raise ValueError('duplicate indexes in DataFrames') for c, column in enumerate(data_frame.columns): if PYTHON3: self.set(indexes=data_frame_index, columns=column, values=data_frame.data[c].copy()) else: self.set(indexes=data_frame_index, columns=column, values=data_frame.data[c][:])
Append another DataFrame to this DataFrame. If the new data_frame has columns that are not in the current DataFrame then new columns will be created. All of the indexes in the data_frame must be different from the current indexes or will raise an error. :param data_frame: DataFrame to append :return: nothing
Below is the the instruction that describes the task: ### Input: Append another DataFrame to this DataFrame. If the new data_frame has columns that are not in the current DataFrame then new columns will be created. All of the indexes in the data_frame must be different from the current indexes or will raise an error. :param data_frame: DataFrame to append :return: nothing ### Response: def append(self, data_frame): """ Append another DataFrame to this DataFrame. If the new data_frame has columns that are not in the current DataFrame then new columns will be created. All of the indexes in the data_frame must be different from the current indexes or will raise an error. :param data_frame: DataFrame to append :return: nothing """ if len(data_frame) == 0: # empty DataFrame, do nothing return data_frame_index = data_frame.index combined_index = self._index + data_frame_index if len(set(combined_index)) != len(combined_index): raise ValueError('duplicate indexes in DataFrames') for c, column in enumerate(data_frame.columns): if PYTHON3: self.set(indexes=data_frame_index, columns=column, values=data_frame.data[c].copy()) else: self.set(indexes=data_frame_index, columns=column, values=data_frame.data[c][:])
def geoms(self, scale=None, bounds=None, as_element=True): """ Returns the geometries held by the Feature. Parameters ---------- scale: str Scale of the geometry to return expressed as string. Available scales depends on the Feature type. NaturalEarthFeature: '10m', '50m', '110m' GSHHSFeature: 'auto', 'coarse', 'low', 'intermediate', 'high', 'full' bounds: tuple Tuple of a bounding region to query for geometries in as_element: boolean Whether to wrap the geometries in an element Returns ------- geometries: Polygons/Path Polygons or Path object wrapping around returned geometries """ feature = self.data if scale is not None: feature = feature.with_scale(scale) if bounds: extent = (bounds[0], bounds[2], bounds[1], bounds[3]) else: extent = None geoms = [g for g in feature.intersecting_geometries(extent) if g is not None] if not as_element: return geoms elif not geoms or 'Polygon' in geoms[0].geom_type: return Polygons(geoms, crs=feature.crs) elif 'Point' in geoms[0].geom_type: return Points(geoms, crs=feature.crs) else: return Path(geoms, crs=feature.crs)
Returns the geometries held by the Feature. Parameters ---------- scale: str Scale of the geometry to return expressed as string. Available scales depends on the Feature type. NaturalEarthFeature: '10m', '50m', '110m' GSHHSFeature: 'auto', 'coarse', 'low', 'intermediate', 'high', 'full' bounds: tuple Tuple of a bounding region to query for geometries in as_element: boolean Whether to wrap the geometries in an element Returns ------- geometries: Polygons/Path Polygons or Path object wrapping around returned geometries
Below is the the instruction that describes the task: ### Input: Returns the geometries held by the Feature. Parameters ---------- scale: str Scale of the geometry to return expressed as string. Available scales depends on the Feature type. NaturalEarthFeature: '10m', '50m', '110m' GSHHSFeature: 'auto', 'coarse', 'low', 'intermediate', 'high', 'full' bounds: tuple Tuple of a bounding region to query for geometries in as_element: boolean Whether to wrap the geometries in an element Returns ------- geometries: Polygons/Path Polygons or Path object wrapping around returned geometries ### Response: def geoms(self, scale=None, bounds=None, as_element=True): """ Returns the geometries held by the Feature. Parameters ---------- scale: str Scale of the geometry to return expressed as string. Available scales depends on the Feature type. NaturalEarthFeature: '10m', '50m', '110m' GSHHSFeature: 'auto', 'coarse', 'low', 'intermediate', 'high', 'full' bounds: tuple Tuple of a bounding region to query for geometries in as_element: boolean Whether to wrap the geometries in an element Returns ------- geometries: Polygons/Path Polygons or Path object wrapping around returned geometries """ feature = self.data if scale is not None: feature = feature.with_scale(scale) if bounds: extent = (bounds[0], bounds[2], bounds[1], bounds[3]) else: extent = None geoms = [g for g in feature.intersecting_geometries(extent) if g is not None] if not as_element: return geoms elif not geoms or 'Polygon' in geoms[0].geom_type: return Polygons(geoms, crs=feature.crs) elif 'Point' in geoms[0].geom_type: return Points(geoms, crs=feature.crs) else: return Path(geoms, crs=feature.crs)
def setter(self, func): """Register a set function for the DynamicProperty This function must take two arguments, self and the new value. Input value to the function is validated with prop validation prior to execution. """ if not callable(func): raise TypeError('setter must be callable function') if hasattr(func, '__code__') and func.__code__.co_argcount != 2: raise TypeError('setter must be a function with two arguments') if func.__name__ != self.name: raise TypeError('setter function must have same name as getter') self._set_func = func return self
Register a set function for the DynamicProperty This function must take two arguments, self and the new value. Input value to the function is validated with prop validation prior to execution.
Below is the the instruction that describes the task: ### Input: Register a set function for the DynamicProperty This function must take two arguments, self and the new value. Input value to the function is validated with prop validation prior to execution. ### Response: def setter(self, func): """Register a set function for the DynamicProperty This function must take two arguments, self and the new value. Input value to the function is validated with prop validation prior to execution. """ if not callable(func): raise TypeError('setter must be callable function') if hasattr(func, '__code__') and func.__code__.co_argcount != 2: raise TypeError('setter must be a function with two arguments') if func.__name__ != self.name: raise TypeError('setter function must have same name as getter') self._set_func = func return self
def send_cmd(cmd, args, ret): """Collect and send analytics for CLI command. Args: args (list): parsed args for the CLI command. ret (int): return value of the CLI command. """ from dvc.daemon import daemon if not Analytics._is_enabled(cmd): return analytics = Analytics() analytics.collect_cmd(args, ret) daemon(["analytics", analytics.dump()])
Collect and send analytics for CLI command. Args: args (list): parsed args for the CLI command. ret (int): return value of the CLI command.
Below is the the instruction that describes the task: ### Input: Collect and send analytics for CLI command. Args: args (list): parsed args for the CLI command. ret (int): return value of the CLI command. ### Response: def send_cmd(cmd, args, ret): """Collect and send analytics for CLI command. Args: args (list): parsed args for the CLI command. ret (int): return value of the CLI command. """ from dvc.daemon import daemon if not Analytics._is_enabled(cmd): return analytics = Analytics() analytics.collect_cmd(args, ret) daemon(["analytics", analytics.dump()])
async def stop(self): """ Stops playback from lavalink. .. important:: This method will clear the queue. """ await self.node.stop(self.channel.guild.id) self.queue = [] self.current = None self.position = 0 self._paused = False
Stops playback from lavalink. .. important:: This method will clear the queue.
Below is the the instruction that describes the task: ### Input: Stops playback from lavalink. .. important:: This method will clear the queue. ### Response: async def stop(self): """ Stops playback from lavalink. .. important:: This method will clear the queue. """ await self.node.stop(self.channel.guild.id) self.queue = [] self.current = None self.position = 0 self._paused = False
def zipWithUniqueId(self): """ Zips this RDD with generated unique Long ids. Items in the kth partition will get ids k, n+k, 2*n+k, ..., where n is the number of partitions. So there may exist gaps, but this method won't trigger a spark job, which is different from L{zipWithIndex} >>> sc.parallelize(["a", "b", "c", "d", "e"], 3).zipWithUniqueId().collect() [('a', 0), ('b', 1), ('c', 4), ('d', 2), ('e', 5)] """ n = self.getNumPartitions() def func(k, it): for i, v in enumerate(it): yield v, i * n + k return self.mapPartitionsWithIndex(func)
Zips this RDD with generated unique Long ids. Items in the kth partition will get ids k, n+k, 2*n+k, ..., where n is the number of partitions. So there may exist gaps, but this method won't trigger a spark job, which is different from L{zipWithIndex} >>> sc.parallelize(["a", "b", "c", "d", "e"], 3).zipWithUniqueId().collect() [('a', 0), ('b', 1), ('c', 4), ('d', 2), ('e', 5)]
Below is the the instruction that describes the task: ### Input: Zips this RDD with generated unique Long ids. Items in the kth partition will get ids k, n+k, 2*n+k, ..., where n is the number of partitions. So there may exist gaps, but this method won't trigger a spark job, which is different from L{zipWithIndex} >>> sc.parallelize(["a", "b", "c", "d", "e"], 3).zipWithUniqueId().collect() [('a', 0), ('b', 1), ('c', 4), ('d', 2), ('e', 5)] ### Response: def zipWithUniqueId(self): """ Zips this RDD with generated unique Long ids. Items in the kth partition will get ids k, n+k, 2*n+k, ..., where n is the number of partitions. So there may exist gaps, but this method won't trigger a spark job, which is different from L{zipWithIndex} >>> sc.parallelize(["a", "b", "c", "d", "e"], 3).zipWithUniqueId().collect() [('a', 0), ('b', 1), ('c', 4), ('d', 2), ('e', 5)] """ n = self.getNumPartitions() def func(k, it): for i, v in enumerate(it): yield v, i * n + k return self.mapPartitionsWithIndex(func)
def name_targets(func): """ Wrap a function such that returning ``'a', 'b', 'c', [1, 2, 3]`` transforms the value into ``dict(a=1, b=2, c=3)``. This is useful in the case where the last parameter is an SCons command. """ def wrap(*a, **kw): ret = func(*a, **kw) return dict(zip(ret[:-1], ret[-1])) return wrap
Wrap a function such that returning ``'a', 'b', 'c', [1, 2, 3]`` transforms the value into ``dict(a=1, b=2, c=3)``. This is useful in the case where the last parameter is an SCons command.
Below is the the instruction that describes the task: ### Input: Wrap a function such that returning ``'a', 'b', 'c', [1, 2, 3]`` transforms the value into ``dict(a=1, b=2, c=3)``. This is useful in the case where the last parameter is an SCons command. ### Response: def name_targets(func): """ Wrap a function such that returning ``'a', 'b', 'c', [1, 2, 3]`` transforms the value into ``dict(a=1, b=2, c=3)``. This is useful in the case where the last parameter is an SCons command. """ def wrap(*a, **kw): ret = func(*a, **kw) return dict(zip(ret[:-1], ret[-1])) return wrap
def bind(self, ticket, device_id, user_id): """ 绑定设备 详情请参考 https://iot.weixin.qq.com/wiki/new/index.html?page=3-4-7 :param ticket: 绑定操作合法性的凭证(由微信后台生成,第三方H5通过客户端jsapi获得) :param device_id: 设备id :param user_id: 用户对应的openid :return: 返回的 JSON 数据包 """ return self._post( 'bind', data={ 'ticket': ticket, 'device_id': device_id, 'openid': user_id } )
绑定设备 详情请参考 https://iot.weixin.qq.com/wiki/new/index.html?page=3-4-7 :param ticket: 绑定操作合法性的凭证(由微信后台生成,第三方H5通过客户端jsapi获得) :param device_id: 设备id :param user_id: 用户对应的openid :return: 返回的 JSON 数据包
Below is the the instruction that describes the task: ### Input: 绑定设备 详情请参考 https://iot.weixin.qq.com/wiki/new/index.html?page=3-4-7 :param ticket: 绑定操作合法性的凭证(由微信后台生成,第三方H5通过客户端jsapi获得) :param device_id: 设备id :param user_id: 用户对应的openid :return: 返回的 JSON 数据包 ### Response: def bind(self, ticket, device_id, user_id): """ 绑定设备 详情请参考 https://iot.weixin.qq.com/wiki/new/index.html?page=3-4-7 :param ticket: 绑定操作合法性的凭证(由微信后台生成,第三方H5通过客户端jsapi获得) :param device_id: 设备id :param user_id: 用户对应的openid :return: 返回的 JSON 数据包 """ return self._post( 'bind', data={ 'ticket': ticket, 'device_id': device_id, 'openid': user_id } )
def _serialize_parameters(parameters): """Serialize some parameters to match python native types with formats specified in google api docs like: * True/False -> "true"/"false", * {"a": 1, "b":2} -> "a:1|b:2" :type parameters: dict oif query parameters """ for key, value in parameters.items(): if isinstance(value, bool): parameters[key] = "true" if value else "false" elif isinstance(value, dict): parameters[key] = "|".join( ("%s:%s" % (k, v) for k, v in value.items())) elif isinstance(value, (list, tuple)): parameters[key] = "|".join(value) return parameters
Serialize some parameters to match python native types with formats specified in google api docs like: * True/False -> "true"/"false", * {"a": 1, "b":2} -> "a:1|b:2" :type parameters: dict oif query parameters
Below is the the instruction that describes the task: ### Input: Serialize some parameters to match python native types with formats specified in google api docs like: * True/False -> "true"/"false", * {"a": 1, "b":2} -> "a:1|b:2" :type parameters: dict oif query parameters ### Response: def _serialize_parameters(parameters): """Serialize some parameters to match python native types with formats specified in google api docs like: * True/False -> "true"/"false", * {"a": 1, "b":2} -> "a:1|b:2" :type parameters: dict oif query parameters """ for key, value in parameters.items(): if isinstance(value, bool): parameters[key] = "true" if value else "false" elif isinstance(value, dict): parameters[key] = "|".join( ("%s:%s" % (k, v) for k, v in value.items())) elif isinstance(value, (list, tuple)): parameters[key] = "|".join(value) return parameters
def parse_play(boxscore_id, details, is_hm): """Parse play details from a play-by-play string describing a play. Assuming valid input, this function returns structured data in a dictionary describing the play. If the play detail string was invalid, this function returns None. :param boxscore_id: the boxscore ID of the play :param details: detail string for the play :param is_hm: bool indicating whether the offense is at home :param returns: dictionary of play attributes or None if invalid :rtype: dictionary or None """ # if input isn't a string, return None if not details or not isinstance(details, basestring): return None bs = sportsref.nba.BoxScore(boxscore_id) aw, hm = bs.away(), bs.home() season = sportsref.nba.Season(bs.season()) hm_roster = set(bs.basic_stats().query('is_home == True').player_id.values) p = {} p['detail'] = details p['home'] = hm p['away'] = aw p['is_home_play'] = is_hm # parsing field goal attempts shotRE = (r'(?P<shooter>{0}) (?P<is_fgm>makes|misses) ' '(?P<is_three>2|3)\-pt shot').format(PLAYER_RE) distRE = r' (?:from (?P<shot_dist>\d+) ft|at rim)' assistRE = r' \(assist by (?P<assister>{0})\)'.format(PLAYER_RE) blockRE = r' \(block by (?P<blocker>{0})\)'.format(PLAYER_RE) shotRE = r'{0}{1}(?:{2}|{3})?'.format(shotRE, distRE, assistRE, blockRE) m = re.match(shotRE, details, re.IGNORECASE) if m: p['is_fga'] = True p.update(m.groupdict()) p['shot_dist'] = p['shot_dist'] if p['shot_dist'] is not None else 0 p['shot_dist'] = int(p['shot_dist']) p['is_fgm'] = p['is_fgm'] == 'makes' p['is_three'] = p['is_three'] == '3' p['is_assist'] = pd.notnull(p.get('assister')) p['is_block'] = pd.notnull(p.get('blocker')) shooter_home = p['shooter'] in hm_roster p['off_team'] = hm if shooter_home else aw p['def_team'] = aw if shooter_home else hm return p # parsing jump balls jumpRE = ((r'Jump ball: (?P<away_jumper>{0}) vs\. (?P<home_jumper>{0})' r'(?: \((?P<gains_poss>{0}) gains possession\))?') .format(PLAYER_RE)) m = re.match(jumpRE, details, re.IGNORECASE) if m: p['is_jump_ball'] = True p.update(m.groupdict()) return p # parsing rebounds rebRE = (r'(?P<is_oreb>Offensive|Defensive) rebound' r' by (?P<rebounder>{0}|Team)').format(PLAYER_RE) m = re.match(rebRE, details, re.I) if m: p['is_reb'] = True p.update(m.groupdict()) p['is_oreb'] = p['is_oreb'].lower() == 'offensive' p['is_dreb'] = not p['is_oreb'] if p['rebounder'] == 'Team': p['reb_team'], other = (hm, aw) if is_hm else (aw, hm) else: reb_home = p['rebounder'] in hm_roster p['reb_team'], other = (hm, aw) if reb_home else (aw, hm) p['off_team'] = p['reb_team'] if p['is_oreb'] else other p['def_team'] = p['reb_team'] if p['is_dreb'] else other return p # parsing free throws ftRE = (r'(?P<ft_shooter>{}) (?P<is_ftm>makes|misses) ' r'(?P<is_tech_fta>technical )?(?P<is_flag_fta>flagrant )?' r'(?P<is_clearpath_fta>clear path )?free throw' r'(?: (?P<fta_num>\d+) of (?P<tot_fta>\d+))?').format(PLAYER_RE) m = re.match(ftRE, details, re.I) if m: p['is_fta'] = True p.update(m.groupdict()) p['is_ftm'] = p['is_ftm'] == 'makes' p['is_tech_fta'] = bool(p['is_tech_fta']) p['is_flag_fta'] = bool(p['is_flag_fta']) p['is_clearpath_fta'] = bool(p['is_clearpath_fta']) p['is_pf_fta'] = not p['is_tech_fta'] if p['tot_fta']: p['tot_fta'] = int(p['tot_fta']) if p['fta_num']: p['fta_num'] = int(p['fta_num']) ft_home = p['ft_shooter'] in hm_roster p['fta_team'] = hm if ft_home else aw if not p['is_tech_fta']: p['off_team'] = hm if ft_home else aw p['def_team'] = aw if ft_home else hm return p # parsing substitutions subRE = (r'(?P<sub_in>{0}) enters the game for ' r'(?P<sub_out>{0})').format(PLAYER_RE) m = re.match(subRE, details, re.I) if m: p['is_sub'] = True p.update(m.groupdict()) sub_home = p['sub_in'] in hm_roster or p['sub_out'] in hm_roster p['sub_team'] = hm if sub_home else aw return p # parsing turnovers toReasons = (r'(?P<to_type>[^;]+)(?:; steal by ' r'(?P<stealer>{0}))?').format(PLAYER_RE) toRE = (r'Turnover by (?P<to_by>{}|Team) ' r'\((?:{})\)').format(PLAYER_RE, toReasons) m = re.match(toRE, details, re.I) if m: p['is_to'] = True p.update(m.groupdict()) p['to_type'] = p['to_type'].lower() if p['to_type'] == 'offensive foul': return None p['is_steal'] = pd.notnull(p['stealer']) p['is_travel'] = p['to_type'] == 'traveling' p['is_shot_clock_viol'] = p['to_type'] == 'shot clock' p['is_oob'] = p['to_type'] == 'step out of bounds' p['is_three_sec_viol'] = p['to_type'] == '3 sec' p['is_backcourt_viol'] = p['to_type'] == 'back court' p['is_off_goaltend'] = p['to_type'] == 'offensive goaltending' p['is_double_dribble'] = p['to_type'] == 'dbl dribble' p['is_discont_dribble'] = p['to_type'] == 'discontinued dribble' p['is_carry'] = p['to_type'] == 'palming' if p['to_by'] == 'Team': p['off_team'] = hm if is_hm else aw p['def_team'] = aw if is_hm else hm else: to_home = p['to_by'] in hm_roster p['off_team'] = hm if to_home else aw p['def_team'] = aw if to_home else hm return p # parsing shooting fouls shotFoulRE = (r'Shooting(?P<is_block_foul> block)? foul by (?P<fouler>{0})' r'(?: \(drawn by (?P<drew_foul>{0})\))?').format(PLAYER_RE) m = re.match(shotFoulRE, details, re.I) if m: p['is_pf'] = True p['is_shot_foul'] = True p.update(m.groupdict()) p['is_block_foul'] = bool(p['is_block_foul']) foul_on_home = p['fouler'] in hm_roster p['off_team'] = aw if foul_on_home else hm p['def_team'] = hm if foul_on_home else aw p['foul_team'] = p['def_team'] return p # parsing offensive fouls offFoulRE = (r'Offensive(?P<is_charge> charge)? foul ' r'by (?P<to_by>{0})' r'(?: \(drawn by (?P<drew_foul>{0})\))?').format(PLAYER_RE) m = re.match(offFoulRE, details, re.I) if m: p['is_pf'] = True p['is_off_foul'] = True p['is_to'] = True p['to_type'] = 'offensive foul' p.update(m.groupdict()) p['is_charge'] = bool(p['is_charge']) p['fouler'] = p['to_by'] foul_on_home = p['fouler'] in hm_roster p['off_team'] = hm if foul_on_home else aw p['def_team'] = aw if foul_on_home else hm p['foul_team'] = p['off_team'] return p # parsing personal fouls foulRE = (r'Personal (?P<is_take_foul>take )?(?P<is_block_foul>block )?' r'foul by (?P<fouler>{0})(?: \(drawn by ' r'(?P<drew_foul>{0})\))?').format(PLAYER_RE) m = re.match(foulRE, details, re.I) if m: p['is_pf'] = True p.update(m.groupdict()) p['is_take_foul'] = bool(p['is_take_foul']) p['is_block_foul'] = bool(p['is_block_foul']) foul_on_home = p['fouler'] in hm_roster p['off_team'] = aw if foul_on_home else hm p['def_team'] = hm if foul_on_home else aw p['foul_team'] = p['def_team'] return p # TODO: parsing double personal fouls # double_foul_re = (r'Double personal foul by (?P<fouler1>{0}) and ' # r'(?P<fouler2>{0})').format(PLAYER_RE) # m = re.match(double_Foul_re, details, re.I) # if m: # p['is_pf'] = True # p.update(m.groupdict()) # p['off_team'] = # parsing loose ball fouls looseBallRE = (r'Loose ball foul by (?P<fouler>{0})' r'(?: \(drawn by (?P<drew_foul>{0})\))?').format(PLAYER_RE) m = re.match(looseBallRE, details, re.I) if m: p['is_pf'] = True p['is_loose_ball_foul'] = True p.update(m.groupdict()) foul_home = p['fouler'] in hm_roster p['foul_team'] = hm if foul_home else aw return p # parsing punching fouls # TODO # parsing away from play fouls awayFromBallRE = ((r'Away from play foul by (?P<fouler>{0})' r'(?: \(drawn by (?P<drew_foul>{0})\))?') .format(PLAYER_RE)) m = re.match(awayFromBallRE, details, re.I) if m: p['is_pf'] = True p['is_away_from_play_foul'] = True p.update(m.groupdict()) foul_on_home = p['fouler'] in hm_roster # TODO: figure out who had the ball based on previous play p['foul_team'] = hm if foul_on_home else aw return p # parsing inbound fouls inboundRE = (r'Inbound foul by (?P<fouler>{0})' r'(?: \(drawn by (?P<drew_foul>{0})\))?').format(PLAYER_RE) m = re.match(inboundRE, details, re.I) if m: p['is_pf'] = True p['is_inbound_foul'] = True p.update(m.groupdict()) foul_on_home = p['fouler'] in hm_roster p['off_team'] = aw if foul_on_home else hm p['def_team'] = hm if foul_on_home else aw p['foul_team'] = p['def_team'] return p # parsing flagrant fouls flagrantRE = (r'Flagrant foul type (?P<flag_type>1|2) by (?P<fouler>{0})' r'(?: \(drawn by (?P<drew_foul>{0})\))?').format(PLAYER_RE) m = re.match(flagrantRE, details, re.I) if m: p['is_pf'] = True p['is_flagrant'] = True p.update(m.groupdict()) foul_on_home = p['fouler'] in hm_roster p['foul_team'] = hm if foul_on_home else aw return p # parsing clear path fouls clearPathRE = (r'Clear path foul by (?P<fouler>{0})' r'(?: \(drawn by (?P<drew_foul>{0})\))?').format(PLAYER_RE) m = re.match(clearPathRE, details, re.I) if m: p['is_pf'] = True p['is_clear_path_foul'] = True p.update(m.groupdict()) foul_on_home = p['fouler'] in hm_roster p['off_team'] = aw if foul_on_home else hm p['def_team'] = hm if foul_on_home else aw p['foul_team'] = p['def_team'] return p # parsing timeouts timeoutRE = r'(?P<timeout_team>.*?) (?:full )?timeout' m = re.match(timeoutRE, details, re.I) if m: p['is_timeout'] = True p.update(m.groupdict()) isOfficialTO = p['timeout_team'].lower() == 'official' name_to_id = season.team_names_to_ids() p['timeout_team'] = ( 'Official' if isOfficialTO else name_to_id.get(hm, name_to_id.get(aw, p['timeout_team'])) ) return p # parsing technical fouls techRE = (r'(?P<is_hanging>Hanging )?' r'(?P<is_taunting>Taunting )?' r'(?P<is_ill_def>Ill def )?' r'(?P<is_delay>Delay )?' r'(?P<is_unsport>Non unsport )?' r'tech(?:nical)? foul by ' r'(?P<tech_fouler>{0}|Team)').format(PLAYER_RE) m = re.match(techRE, details, re.I) if m: p['is_tech_foul'] = True p.update(m.groupdict()) p['is_hanging'] = bool(p['is_hanging']) p['is_taunting'] = bool(p['is_taunting']) p['is_ill_def'] = bool(p['is_ill_def']) p['is_delay'] = bool(p['is_delay']) p['is_unsport'] = bool(p['is_unsport']) foul_on_home = p['tech_fouler'] in hm_roster p['foul_team'] = hm if foul_on_home else aw return p # parsing ejections ejectRE = r'(?P<ejectee>{0}|Team) ejected from game'.format(PLAYER_RE) m = re.match(ejectRE, details, re.I) if m: p['is_ejection'] = True p.update(m.groupdict()) if p['ejectee'] == 'Team': p['ejectee_team'] = hm if is_hm else aw else: eject_home = p['ejectee'] in hm_roster p['ejectee_team'] = hm if eject_home else aw return p # parsing defensive 3 seconds techs def3TechRE = (r'(?:Def 3 sec tech foul|Defensive three seconds)' r' by (?P<tech_fouler>{})').format(PLAYER_RE) m = re.match(def3TechRE, details, re.I) if m: p['is_tech_foul'] = True p['is_def_three_secs'] = True p.update(m.groupdict()) foul_on_home = p['tech_fouler'] in hm_roster p['off_team'] = aw if foul_on_home else hm p['def_team'] = hm if foul_on_home else aw p['foul_team'] = p['def_team'] return p # parsing violations violRE = (r'Violation by (?P<violator>{0}|Team) ' r'\((?P<viol_type>.*)\)').format(PLAYER_RE) m = re.match(violRE, details, re.I) if m: p['is_viol'] = True p.update(m.groupdict()) if p['viol_type'] == 'kicked_ball': p['is_to'] = True p['to_by'] = p['violator'] if p['violator'] == 'Team': p['viol_team'] = hm if is_hm else aw else: viol_home = p['violator'] in hm_roster p['viol_team'] = hm if viol_home else aw return p p['is_error'] = True return p
Parse play details from a play-by-play string describing a play. Assuming valid input, this function returns structured data in a dictionary describing the play. If the play detail string was invalid, this function returns None. :param boxscore_id: the boxscore ID of the play :param details: detail string for the play :param is_hm: bool indicating whether the offense is at home :param returns: dictionary of play attributes or None if invalid :rtype: dictionary or None
Below is the the instruction that describes the task: ### Input: Parse play details from a play-by-play string describing a play. Assuming valid input, this function returns structured data in a dictionary describing the play. If the play detail string was invalid, this function returns None. :param boxscore_id: the boxscore ID of the play :param details: detail string for the play :param is_hm: bool indicating whether the offense is at home :param returns: dictionary of play attributes or None if invalid :rtype: dictionary or None ### Response: def parse_play(boxscore_id, details, is_hm): """Parse play details from a play-by-play string describing a play. Assuming valid input, this function returns structured data in a dictionary describing the play. If the play detail string was invalid, this function returns None. :param boxscore_id: the boxscore ID of the play :param details: detail string for the play :param is_hm: bool indicating whether the offense is at home :param returns: dictionary of play attributes or None if invalid :rtype: dictionary or None """ # if input isn't a string, return None if not details or not isinstance(details, basestring): return None bs = sportsref.nba.BoxScore(boxscore_id) aw, hm = bs.away(), bs.home() season = sportsref.nba.Season(bs.season()) hm_roster = set(bs.basic_stats().query('is_home == True').player_id.values) p = {} p['detail'] = details p['home'] = hm p['away'] = aw p['is_home_play'] = is_hm # parsing field goal attempts shotRE = (r'(?P<shooter>{0}) (?P<is_fgm>makes|misses) ' '(?P<is_three>2|3)\-pt shot').format(PLAYER_RE) distRE = r' (?:from (?P<shot_dist>\d+) ft|at rim)' assistRE = r' \(assist by (?P<assister>{0})\)'.format(PLAYER_RE) blockRE = r' \(block by (?P<blocker>{0})\)'.format(PLAYER_RE) shotRE = r'{0}{1}(?:{2}|{3})?'.format(shotRE, distRE, assistRE, blockRE) m = re.match(shotRE, details, re.IGNORECASE) if m: p['is_fga'] = True p.update(m.groupdict()) p['shot_dist'] = p['shot_dist'] if p['shot_dist'] is not None else 0 p['shot_dist'] = int(p['shot_dist']) p['is_fgm'] = p['is_fgm'] == 'makes' p['is_three'] = p['is_three'] == '3' p['is_assist'] = pd.notnull(p.get('assister')) p['is_block'] = pd.notnull(p.get('blocker')) shooter_home = p['shooter'] in hm_roster p['off_team'] = hm if shooter_home else aw p['def_team'] = aw if shooter_home else hm return p # parsing jump balls jumpRE = ((r'Jump ball: (?P<away_jumper>{0}) vs\. (?P<home_jumper>{0})' r'(?: \((?P<gains_poss>{0}) gains possession\))?') .format(PLAYER_RE)) m = re.match(jumpRE, details, re.IGNORECASE) if m: p['is_jump_ball'] = True p.update(m.groupdict()) return p # parsing rebounds rebRE = (r'(?P<is_oreb>Offensive|Defensive) rebound' r' by (?P<rebounder>{0}|Team)').format(PLAYER_RE) m = re.match(rebRE, details, re.I) if m: p['is_reb'] = True p.update(m.groupdict()) p['is_oreb'] = p['is_oreb'].lower() == 'offensive' p['is_dreb'] = not p['is_oreb'] if p['rebounder'] == 'Team': p['reb_team'], other = (hm, aw) if is_hm else (aw, hm) else: reb_home = p['rebounder'] in hm_roster p['reb_team'], other = (hm, aw) if reb_home else (aw, hm) p['off_team'] = p['reb_team'] if p['is_oreb'] else other p['def_team'] = p['reb_team'] if p['is_dreb'] else other return p # parsing free throws ftRE = (r'(?P<ft_shooter>{}) (?P<is_ftm>makes|misses) ' r'(?P<is_tech_fta>technical )?(?P<is_flag_fta>flagrant )?' r'(?P<is_clearpath_fta>clear path )?free throw' r'(?: (?P<fta_num>\d+) of (?P<tot_fta>\d+))?').format(PLAYER_RE) m = re.match(ftRE, details, re.I) if m: p['is_fta'] = True p.update(m.groupdict()) p['is_ftm'] = p['is_ftm'] == 'makes' p['is_tech_fta'] = bool(p['is_tech_fta']) p['is_flag_fta'] = bool(p['is_flag_fta']) p['is_clearpath_fta'] = bool(p['is_clearpath_fta']) p['is_pf_fta'] = not p['is_tech_fta'] if p['tot_fta']: p['tot_fta'] = int(p['tot_fta']) if p['fta_num']: p['fta_num'] = int(p['fta_num']) ft_home = p['ft_shooter'] in hm_roster p['fta_team'] = hm if ft_home else aw if not p['is_tech_fta']: p['off_team'] = hm if ft_home else aw p['def_team'] = aw if ft_home else hm return p # parsing substitutions subRE = (r'(?P<sub_in>{0}) enters the game for ' r'(?P<sub_out>{0})').format(PLAYER_RE) m = re.match(subRE, details, re.I) if m: p['is_sub'] = True p.update(m.groupdict()) sub_home = p['sub_in'] in hm_roster or p['sub_out'] in hm_roster p['sub_team'] = hm if sub_home else aw return p # parsing turnovers toReasons = (r'(?P<to_type>[^;]+)(?:; steal by ' r'(?P<stealer>{0}))?').format(PLAYER_RE) toRE = (r'Turnover by (?P<to_by>{}|Team) ' r'\((?:{})\)').format(PLAYER_RE, toReasons) m = re.match(toRE, details, re.I) if m: p['is_to'] = True p.update(m.groupdict()) p['to_type'] = p['to_type'].lower() if p['to_type'] == 'offensive foul': return None p['is_steal'] = pd.notnull(p['stealer']) p['is_travel'] = p['to_type'] == 'traveling' p['is_shot_clock_viol'] = p['to_type'] == 'shot clock' p['is_oob'] = p['to_type'] == 'step out of bounds' p['is_three_sec_viol'] = p['to_type'] == '3 sec' p['is_backcourt_viol'] = p['to_type'] == 'back court' p['is_off_goaltend'] = p['to_type'] == 'offensive goaltending' p['is_double_dribble'] = p['to_type'] == 'dbl dribble' p['is_discont_dribble'] = p['to_type'] == 'discontinued dribble' p['is_carry'] = p['to_type'] == 'palming' if p['to_by'] == 'Team': p['off_team'] = hm if is_hm else aw p['def_team'] = aw if is_hm else hm else: to_home = p['to_by'] in hm_roster p['off_team'] = hm if to_home else aw p['def_team'] = aw if to_home else hm return p # parsing shooting fouls shotFoulRE = (r'Shooting(?P<is_block_foul> block)? foul by (?P<fouler>{0})' r'(?: \(drawn by (?P<drew_foul>{0})\))?').format(PLAYER_RE) m = re.match(shotFoulRE, details, re.I) if m: p['is_pf'] = True p['is_shot_foul'] = True p.update(m.groupdict()) p['is_block_foul'] = bool(p['is_block_foul']) foul_on_home = p['fouler'] in hm_roster p['off_team'] = aw if foul_on_home else hm p['def_team'] = hm if foul_on_home else aw p['foul_team'] = p['def_team'] return p # parsing offensive fouls offFoulRE = (r'Offensive(?P<is_charge> charge)? foul ' r'by (?P<to_by>{0})' r'(?: \(drawn by (?P<drew_foul>{0})\))?').format(PLAYER_RE) m = re.match(offFoulRE, details, re.I) if m: p['is_pf'] = True p['is_off_foul'] = True p['is_to'] = True p['to_type'] = 'offensive foul' p.update(m.groupdict()) p['is_charge'] = bool(p['is_charge']) p['fouler'] = p['to_by'] foul_on_home = p['fouler'] in hm_roster p['off_team'] = hm if foul_on_home else aw p['def_team'] = aw if foul_on_home else hm p['foul_team'] = p['off_team'] return p # parsing personal fouls foulRE = (r'Personal (?P<is_take_foul>take )?(?P<is_block_foul>block )?' r'foul by (?P<fouler>{0})(?: \(drawn by ' r'(?P<drew_foul>{0})\))?').format(PLAYER_RE) m = re.match(foulRE, details, re.I) if m: p['is_pf'] = True p.update(m.groupdict()) p['is_take_foul'] = bool(p['is_take_foul']) p['is_block_foul'] = bool(p['is_block_foul']) foul_on_home = p['fouler'] in hm_roster p['off_team'] = aw if foul_on_home else hm p['def_team'] = hm if foul_on_home else aw p['foul_team'] = p['def_team'] return p # TODO: parsing double personal fouls # double_foul_re = (r'Double personal foul by (?P<fouler1>{0}) and ' # r'(?P<fouler2>{0})').format(PLAYER_RE) # m = re.match(double_Foul_re, details, re.I) # if m: # p['is_pf'] = True # p.update(m.groupdict()) # p['off_team'] = # parsing loose ball fouls looseBallRE = (r'Loose ball foul by (?P<fouler>{0})' r'(?: \(drawn by (?P<drew_foul>{0})\))?').format(PLAYER_RE) m = re.match(looseBallRE, details, re.I) if m: p['is_pf'] = True p['is_loose_ball_foul'] = True p.update(m.groupdict()) foul_home = p['fouler'] in hm_roster p['foul_team'] = hm if foul_home else aw return p # parsing punching fouls # TODO # parsing away from play fouls awayFromBallRE = ((r'Away from play foul by (?P<fouler>{0})' r'(?: \(drawn by (?P<drew_foul>{0})\))?') .format(PLAYER_RE)) m = re.match(awayFromBallRE, details, re.I) if m: p['is_pf'] = True p['is_away_from_play_foul'] = True p.update(m.groupdict()) foul_on_home = p['fouler'] in hm_roster # TODO: figure out who had the ball based on previous play p['foul_team'] = hm if foul_on_home else aw return p # parsing inbound fouls inboundRE = (r'Inbound foul by (?P<fouler>{0})' r'(?: \(drawn by (?P<drew_foul>{0})\))?').format(PLAYER_RE) m = re.match(inboundRE, details, re.I) if m: p['is_pf'] = True p['is_inbound_foul'] = True p.update(m.groupdict()) foul_on_home = p['fouler'] in hm_roster p['off_team'] = aw if foul_on_home else hm p['def_team'] = hm if foul_on_home else aw p['foul_team'] = p['def_team'] return p # parsing flagrant fouls flagrantRE = (r'Flagrant foul type (?P<flag_type>1|2) by (?P<fouler>{0})' r'(?: \(drawn by (?P<drew_foul>{0})\))?').format(PLAYER_RE) m = re.match(flagrantRE, details, re.I) if m: p['is_pf'] = True p['is_flagrant'] = True p.update(m.groupdict()) foul_on_home = p['fouler'] in hm_roster p['foul_team'] = hm if foul_on_home else aw return p # parsing clear path fouls clearPathRE = (r'Clear path foul by (?P<fouler>{0})' r'(?: \(drawn by (?P<drew_foul>{0})\))?').format(PLAYER_RE) m = re.match(clearPathRE, details, re.I) if m: p['is_pf'] = True p['is_clear_path_foul'] = True p.update(m.groupdict()) foul_on_home = p['fouler'] in hm_roster p['off_team'] = aw if foul_on_home else hm p['def_team'] = hm if foul_on_home else aw p['foul_team'] = p['def_team'] return p # parsing timeouts timeoutRE = r'(?P<timeout_team>.*?) (?:full )?timeout' m = re.match(timeoutRE, details, re.I) if m: p['is_timeout'] = True p.update(m.groupdict()) isOfficialTO = p['timeout_team'].lower() == 'official' name_to_id = season.team_names_to_ids() p['timeout_team'] = ( 'Official' if isOfficialTO else name_to_id.get(hm, name_to_id.get(aw, p['timeout_team'])) ) return p # parsing technical fouls techRE = (r'(?P<is_hanging>Hanging )?' r'(?P<is_taunting>Taunting )?' r'(?P<is_ill_def>Ill def )?' r'(?P<is_delay>Delay )?' r'(?P<is_unsport>Non unsport )?' r'tech(?:nical)? foul by ' r'(?P<tech_fouler>{0}|Team)').format(PLAYER_RE) m = re.match(techRE, details, re.I) if m: p['is_tech_foul'] = True p.update(m.groupdict()) p['is_hanging'] = bool(p['is_hanging']) p['is_taunting'] = bool(p['is_taunting']) p['is_ill_def'] = bool(p['is_ill_def']) p['is_delay'] = bool(p['is_delay']) p['is_unsport'] = bool(p['is_unsport']) foul_on_home = p['tech_fouler'] in hm_roster p['foul_team'] = hm if foul_on_home else aw return p # parsing ejections ejectRE = r'(?P<ejectee>{0}|Team) ejected from game'.format(PLAYER_RE) m = re.match(ejectRE, details, re.I) if m: p['is_ejection'] = True p.update(m.groupdict()) if p['ejectee'] == 'Team': p['ejectee_team'] = hm if is_hm else aw else: eject_home = p['ejectee'] in hm_roster p['ejectee_team'] = hm if eject_home else aw return p # parsing defensive 3 seconds techs def3TechRE = (r'(?:Def 3 sec tech foul|Defensive three seconds)' r' by (?P<tech_fouler>{})').format(PLAYER_RE) m = re.match(def3TechRE, details, re.I) if m: p['is_tech_foul'] = True p['is_def_three_secs'] = True p.update(m.groupdict()) foul_on_home = p['tech_fouler'] in hm_roster p['off_team'] = aw if foul_on_home else hm p['def_team'] = hm if foul_on_home else aw p['foul_team'] = p['def_team'] return p # parsing violations violRE = (r'Violation by (?P<violator>{0}|Team) ' r'\((?P<viol_type>.*)\)').format(PLAYER_RE) m = re.match(violRE, details, re.I) if m: p['is_viol'] = True p.update(m.groupdict()) if p['viol_type'] == 'kicked_ball': p['is_to'] = True p['to_by'] = p['violator'] if p['violator'] == 'Team': p['viol_team'] = hm if is_hm else aw else: viol_home = p['violator'] in hm_roster p['viol_team'] = hm if viol_home else aw return p p['is_error'] = True return p
def hiddenColumns( self ): """ Returns a list of the hidden columns for this tree. :return [<str>, ..] """ output = [] columns = self.columns() for c, column in enumerate(columns): if ( not self.isColumnHidden(c) ): continue output.append(column) return output
Returns a list of the hidden columns for this tree. :return [<str>, ..]
Below is the the instruction that describes the task: ### Input: Returns a list of the hidden columns for this tree. :return [<str>, ..] ### Response: def hiddenColumns( self ): """ Returns a list of the hidden columns for this tree. :return [<str>, ..] """ output = [] columns = self.columns() for c, column in enumerate(columns): if ( not self.isColumnHidden(c) ): continue output.append(column) return output
def hashed(field_name, percent, fields=None, count=0): """Provides a sampling strategy based on hashing and selecting a percentage of data. Args: field_name: the name of the field to hash. percent: the percentage of the resulting hashes to select. fields: an optional list of field names to retrieve. count: optional maximum count of rows to pick. Returns: A sampling function that can be applied to get a hash-based sampling. """ if field_name is None: raise Exception('Hash field must be specified') def _hashed_sampling(sql): projection = Sampling._create_projection(fields) sql = 'SELECT %s FROM (%s) WHERE MOD(ABS(FARM_FINGERPRINT(CAST(%s AS STRING))), 100) < %d' % \ (projection, sql, field_name, percent) if count != 0: sql = '%s LIMIT %d' % (sql, count) return sql return _hashed_sampling
Provides a sampling strategy based on hashing and selecting a percentage of data. Args: field_name: the name of the field to hash. percent: the percentage of the resulting hashes to select. fields: an optional list of field names to retrieve. count: optional maximum count of rows to pick. Returns: A sampling function that can be applied to get a hash-based sampling.
Below is the the instruction that describes the task: ### Input: Provides a sampling strategy based on hashing and selecting a percentage of data. Args: field_name: the name of the field to hash. percent: the percentage of the resulting hashes to select. fields: an optional list of field names to retrieve. count: optional maximum count of rows to pick. Returns: A sampling function that can be applied to get a hash-based sampling. ### Response: def hashed(field_name, percent, fields=None, count=0): """Provides a sampling strategy based on hashing and selecting a percentage of data. Args: field_name: the name of the field to hash. percent: the percentage of the resulting hashes to select. fields: an optional list of field names to retrieve. count: optional maximum count of rows to pick. Returns: A sampling function that can be applied to get a hash-based sampling. """ if field_name is None: raise Exception('Hash field must be specified') def _hashed_sampling(sql): projection = Sampling._create_projection(fields) sql = 'SELECT %s FROM (%s) WHERE MOD(ABS(FARM_FINGERPRINT(CAST(%s AS STRING))), 100) < %d' % \ (projection, sql, field_name, percent) if count != 0: sql = '%s LIMIT %d' % (sql, count) return sql return _hashed_sampling
def is_fw_complete(self): """This API returns the completion status of FW. This returns True if a FW is created with a active policy that has more than one rule associated with it and if a driver init is done successfully. """ LOG.info("In fw_complete needed %(fw_created)s " "%(active_policy_id)s %(is_fw_drvr_created)s " "%(pol_present)s %(fw_type)s", {'fw_created': self.fw_created, 'active_policy_id': self.active_pol_id, 'is_fw_drvr_created': self.is_fw_drvr_created(), 'pol_present': self.active_pol_id in self.policies, 'fw_type': self.fw_type}) if self.active_pol_id is not None: LOG.info("In Drvr create needed %(len_policy)s %(one_rule)s", {'len_policy': len(self.policies[self.active_pol_id]['rule_dict']), 'one_rule': self.one_rule_present(self.active_pol_id)}) return self.fw_created and self.active_pol_id and ( self.is_fw_drvr_created()) and self.fw_type and ( self.active_pol_id in self.policies) and ( len(self.policies[self.active_pol_id]['rule_dict'])) > 0 and ( self.one_rule_present(self.active_pol_id))
This API returns the completion status of FW. This returns True if a FW is created with a active policy that has more than one rule associated with it and if a driver init is done successfully.
Below is the the instruction that describes the task: ### Input: This API returns the completion status of FW. This returns True if a FW is created with a active policy that has more than one rule associated with it and if a driver init is done successfully. ### Response: def is_fw_complete(self): """This API returns the completion status of FW. This returns True if a FW is created with a active policy that has more than one rule associated with it and if a driver init is done successfully. """ LOG.info("In fw_complete needed %(fw_created)s " "%(active_policy_id)s %(is_fw_drvr_created)s " "%(pol_present)s %(fw_type)s", {'fw_created': self.fw_created, 'active_policy_id': self.active_pol_id, 'is_fw_drvr_created': self.is_fw_drvr_created(), 'pol_present': self.active_pol_id in self.policies, 'fw_type': self.fw_type}) if self.active_pol_id is not None: LOG.info("In Drvr create needed %(len_policy)s %(one_rule)s", {'len_policy': len(self.policies[self.active_pol_id]['rule_dict']), 'one_rule': self.one_rule_present(self.active_pol_id)}) return self.fw_created and self.active_pol_id and ( self.is_fw_drvr_created()) and self.fw_type and ( self.active_pol_id in self.policies) and ( len(self.policies[self.active_pol_id]['rule_dict'])) > 0 and ( self.one_rule_present(self.active_pol_id))
def fetchmany(self, size=None): """Fetch the next set of rows of a query result, returning a sequence of sequences (e.g. a list of tuples). An empty sequence is returned when no more rows are available. The number of rows to fetch per call is specified by the parameter. If it is not given, the cursor's arraysize determines the number of rows to be fetched. The method should try to fetch as many rows as indicated by the size parameter. If this is not possible due to the specified number of rows not being available, fewer rows may be returned. """ if self._state == self._STATE_NONE: raise Exception("No query yet") if size is None: size = 1 if not self._data: return [] else: if len(self._data) > size: result, self._data = self._data[:size], self._data[size:] else: result, self._data = self._data, [] self._rownumber += len(result) return result
Fetch the next set of rows of a query result, returning a sequence of sequences (e.g. a list of tuples). An empty sequence is returned when no more rows are available. The number of rows to fetch per call is specified by the parameter. If it is not given, the cursor's arraysize determines the number of rows to be fetched. The method should try to fetch as many rows as indicated by the size parameter. If this is not possible due to the specified number of rows not being available, fewer rows may be returned.
Below is the the instruction that describes the task: ### Input: Fetch the next set of rows of a query result, returning a sequence of sequences (e.g. a list of tuples). An empty sequence is returned when no more rows are available. The number of rows to fetch per call is specified by the parameter. If it is not given, the cursor's arraysize determines the number of rows to be fetched. The method should try to fetch as many rows as indicated by the size parameter. If this is not possible due to the specified number of rows not being available, fewer rows may be returned. ### Response: def fetchmany(self, size=None): """Fetch the next set of rows of a query result, returning a sequence of sequences (e.g. a list of tuples). An empty sequence is returned when no more rows are available. The number of rows to fetch per call is specified by the parameter. If it is not given, the cursor's arraysize determines the number of rows to be fetched. The method should try to fetch as many rows as indicated by the size parameter. If this is not possible due to the specified number of rows not being available, fewer rows may be returned. """ if self._state == self._STATE_NONE: raise Exception("No query yet") if size is None: size = 1 if not self._data: return [] else: if len(self._data) > size: result, self._data = self._data[:size], self._data[size:] else: result, self._data = self._data, [] self._rownumber += len(result) return result
def get_pixel_distance(self, x1, y1, x2, y2): """Calculate distance between the given pixel positions. Parameters ---------- x1, y1, x2, y2 : number Pixel coordinates. Returns ------- dist : float Rounded distance. """ dx = abs(x2 - x1) dy = abs(y2 - y1) dist = np.sqrt(dx * dx + dy * dy) dist = np.round(dist) return dist
Calculate distance between the given pixel positions. Parameters ---------- x1, y1, x2, y2 : number Pixel coordinates. Returns ------- dist : float Rounded distance.
Below is the the instruction that describes the task: ### Input: Calculate distance between the given pixel positions. Parameters ---------- x1, y1, x2, y2 : number Pixel coordinates. Returns ------- dist : float Rounded distance. ### Response: def get_pixel_distance(self, x1, y1, x2, y2): """Calculate distance between the given pixel positions. Parameters ---------- x1, y1, x2, y2 : number Pixel coordinates. Returns ------- dist : float Rounded distance. """ dx = abs(x2 - x1) dy = abs(y2 - y1) dist = np.sqrt(dx * dx + dy * dy) dist = np.round(dist) return dist
def to_task(self): """Return a task object representing this async job.""" from google.appengine.api.taskqueue import Task from google.appengine.api.taskqueue import TaskRetryOptions self._increment_recursion_level() self.check_recursion_depth() url = "%s/%s" % (ASYNC_ENDPOINT, self.function_path) kwargs = { 'url': url, 'headers': self.get_headers().copy(), 'payload': json.dumps(self.to_dict()) } kwargs.update(copy.deepcopy(self.get_task_args())) # Set task_retry_limit retry_options = copy.deepcopy(DEFAULT_RETRY_OPTIONS) retry_options.update(kwargs.pop('retry_options', {})) kwargs['retry_options'] = TaskRetryOptions(**retry_options) return Task(**kwargs)
Return a task object representing this async job.
Below is the the instruction that describes the task: ### Input: Return a task object representing this async job. ### Response: def to_task(self): """Return a task object representing this async job.""" from google.appengine.api.taskqueue import Task from google.appengine.api.taskqueue import TaskRetryOptions self._increment_recursion_level() self.check_recursion_depth() url = "%s/%s" % (ASYNC_ENDPOINT, self.function_path) kwargs = { 'url': url, 'headers': self.get_headers().copy(), 'payload': json.dumps(self.to_dict()) } kwargs.update(copy.deepcopy(self.get_task_args())) # Set task_retry_limit retry_options = copy.deepcopy(DEFAULT_RETRY_OPTIONS) retry_options.update(kwargs.pop('retry_options', {})) kwargs['retry_options'] = TaskRetryOptions(**retry_options) return Task(**kwargs)
def inflate_plugins(self, plugins_definition, inflate_method): """ Inflate multiple plugins based on a list/dict definition. Args: plugins_definition (list/dict): the plugins definitions. inflate_method (method): the method to indlate each plugin. Returns: list: a list of plugin instances. Raises: ValueError: when the definition type is not list or dict. """ if isinstance(plugins_definition, list): return self.inflate_plugin_list(plugins_definition, inflate_method) elif isinstance(plugins_definition, dict): return self.inflate_plugin_dict(plugins_definition, inflate_method) else: raise ValueError('%s type is not supported for a plugin list, ' 'use list or dict' % type(plugins_definition))
Inflate multiple plugins based on a list/dict definition. Args: plugins_definition (list/dict): the plugins definitions. inflate_method (method): the method to indlate each plugin. Returns: list: a list of plugin instances. Raises: ValueError: when the definition type is not list or dict.
Below is the the instruction that describes the task: ### Input: Inflate multiple plugins based on a list/dict definition. Args: plugins_definition (list/dict): the plugins definitions. inflate_method (method): the method to indlate each plugin. Returns: list: a list of plugin instances. Raises: ValueError: when the definition type is not list or dict. ### Response: def inflate_plugins(self, plugins_definition, inflate_method): """ Inflate multiple plugins based on a list/dict definition. Args: plugins_definition (list/dict): the plugins definitions. inflate_method (method): the method to indlate each plugin. Returns: list: a list of plugin instances. Raises: ValueError: when the definition type is not list or dict. """ if isinstance(plugins_definition, list): return self.inflate_plugin_list(plugins_definition, inflate_method) elif isinstance(plugins_definition, dict): return self.inflate_plugin_dict(plugins_definition, inflate_method) else: raise ValueError('%s type is not supported for a plugin list, ' 'use list or dict' % type(plugins_definition))
def mmi_ramp_roman(raster_layer): """Generate an mmi ramp using range of 1-10 on roman. A standarised range is used so that two shakemaps of different intensities can be properly compared visually with colours stretched accross the same range. The colours used are the 'standard' colours commonly shown for the mercalli scale e.g. on wikipedia and other sources. :param raster_layer: A raster layer that will have an mmi style applied. :type raster_layer: QgsRasterLayer .. versionadded:: 4.0 """ items = [] sorted_mmi_scale = sorted( earthquake_mmi_scale['classes'], key=itemgetter('value')) for class_max in sorted_mmi_scale: colour = class_max['color'] label = '%s' % class_max['key'] ramp_item = QgsColorRampShader.ColorRampItem( class_max['value'], colour, label) items.append(ramp_item) raster_shader = QgsRasterShader() ramp_shader = QgsColorRampShader() ramp_shader.setColorRampType(QgsColorRampShader.Interpolated) ramp_shader.setColorRampItemList(items) raster_shader.setRasterShaderFunction(ramp_shader) band = 1 renderer = QgsSingleBandPseudoColorRenderer( raster_layer.dataProvider(), band, raster_shader) raster_layer.setRenderer(renderer)
Generate an mmi ramp using range of 1-10 on roman. A standarised range is used so that two shakemaps of different intensities can be properly compared visually with colours stretched accross the same range. The colours used are the 'standard' colours commonly shown for the mercalli scale e.g. on wikipedia and other sources. :param raster_layer: A raster layer that will have an mmi style applied. :type raster_layer: QgsRasterLayer .. versionadded:: 4.0
Below is the the instruction that describes the task: ### Input: Generate an mmi ramp using range of 1-10 on roman. A standarised range is used so that two shakemaps of different intensities can be properly compared visually with colours stretched accross the same range. The colours used are the 'standard' colours commonly shown for the mercalli scale e.g. on wikipedia and other sources. :param raster_layer: A raster layer that will have an mmi style applied. :type raster_layer: QgsRasterLayer .. versionadded:: 4.0 ### Response: def mmi_ramp_roman(raster_layer): """Generate an mmi ramp using range of 1-10 on roman. A standarised range is used so that two shakemaps of different intensities can be properly compared visually with colours stretched accross the same range. The colours used are the 'standard' colours commonly shown for the mercalli scale e.g. on wikipedia and other sources. :param raster_layer: A raster layer that will have an mmi style applied. :type raster_layer: QgsRasterLayer .. versionadded:: 4.0 """ items = [] sorted_mmi_scale = sorted( earthquake_mmi_scale['classes'], key=itemgetter('value')) for class_max in sorted_mmi_scale: colour = class_max['color'] label = '%s' % class_max['key'] ramp_item = QgsColorRampShader.ColorRampItem( class_max['value'], colour, label) items.append(ramp_item) raster_shader = QgsRasterShader() ramp_shader = QgsColorRampShader() ramp_shader.setColorRampType(QgsColorRampShader.Interpolated) ramp_shader.setColorRampItemList(items) raster_shader.setRasterShaderFunction(ramp_shader) band = 1 renderer = QgsSingleBandPseudoColorRenderer( raster_layer.dataProvider(), band, raster_shader) raster_layer.setRenderer(renderer)
def chown(self, tarinfo, targetpath): """Set owner of targetpath according to tarinfo. """ if pwd and hasattr(os, "geteuid") and os.geteuid() == 0: # We have to be root to do so. try: g = grp.getgrnam(tarinfo.gname)[2] except KeyError: g = tarinfo.gid try: u = pwd.getpwnam(tarinfo.uname)[2] except KeyError: u = tarinfo.uid try: if tarinfo.issym() and hasattr(os, "lchown"): os.lchown(targetpath, u, g) else: if sys.platform != "os2emx": os.chown(targetpath, u, g) except EnvironmentError as e: raise ExtractError("could not change owner")
Set owner of targetpath according to tarinfo.
Below is the the instruction that describes the task: ### Input: Set owner of targetpath according to tarinfo. ### Response: def chown(self, tarinfo, targetpath): """Set owner of targetpath according to tarinfo. """ if pwd and hasattr(os, "geteuid") and os.geteuid() == 0: # We have to be root to do so. try: g = grp.getgrnam(tarinfo.gname)[2] except KeyError: g = tarinfo.gid try: u = pwd.getpwnam(tarinfo.uname)[2] except KeyError: u = tarinfo.uid try: if tarinfo.issym() and hasattr(os, "lchown"): os.lchown(targetpath, u, g) else: if sys.platform != "os2emx": os.chown(targetpath, u, g) except EnvironmentError as e: raise ExtractError("could not change owner")
def run_gradle(path=kernel_path, cmd='build', skip_tests=False): """Return a Command for running gradle scripts. Parameters ---------- path: str, optional The base path of the node package. Defaults to the repo root. cmd: str, optional The command to run with gradlew. """ class Gradle(BaseCommand): description = 'Run gradle script' def skip_test_option(self, skip): if skip: return '-Dskip.tests=True' else: return '-Dskip.tests=False' def run(self): run([('' if sys.platform == 'win32' else './') + 'gradlew', '--no-daemon', cmd, self.skip_test_option(skip_tests)], cwd=path) return Gradle
Return a Command for running gradle scripts. Parameters ---------- path: str, optional The base path of the node package. Defaults to the repo root. cmd: str, optional The command to run with gradlew.
Below is the the instruction that describes the task: ### Input: Return a Command for running gradle scripts. Parameters ---------- path: str, optional The base path of the node package. Defaults to the repo root. cmd: str, optional The command to run with gradlew. ### Response: def run_gradle(path=kernel_path, cmd='build', skip_tests=False): """Return a Command for running gradle scripts. Parameters ---------- path: str, optional The base path of the node package. Defaults to the repo root. cmd: str, optional The command to run with gradlew. """ class Gradle(BaseCommand): description = 'Run gradle script' def skip_test_option(self, skip): if skip: return '-Dskip.tests=True' else: return '-Dskip.tests=False' def run(self): run([('' if sys.platform == 'win32' else './') + 'gradlew', '--no-daemon', cmd, self.skip_test_option(skip_tests)], cwd=path) return Gradle
def email_url_config(cls, url, backend=None): """Parses an email URL.""" config = {} url = urlparse(url) if not isinstance(url, cls.URL_CLASS) else url # Remove query strings path = url.path[1:] path = unquote_plus(path.split('?', 2)[0]) # Update with environment configuration config.update({ 'EMAIL_FILE_PATH': path, 'EMAIL_HOST_USER': _cast_urlstr(url.username), 'EMAIL_HOST_PASSWORD': _cast_urlstr(url.password), 'EMAIL_HOST': url.hostname, 'EMAIL_PORT': _cast_int(url.port), }) if backend: config['EMAIL_BACKEND'] = backend elif url.scheme not in cls.EMAIL_SCHEMES: raise ImproperlyConfigured('Invalid email schema %s' % url.scheme) elif url.scheme in cls.EMAIL_SCHEMES: config['EMAIL_BACKEND'] = cls.EMAIL_SCHEMES[url.scheme] if url.scheme in ('smtps', 'smtp+tls'): config['EMAIL_USE_TLS'] = True elif url.scheme == 'smtp+ssl': config['EMAIL_USE_SSL'] = True if url.query: config_options = {} for k, v in parse_qs(url.query).items(): opt = {k.upper(): _cast_int(v[0])} if k.upper() in cls._EMAIL_BASE_OPTIONS: config.update(opt) else: config_options.update(opt) config['OPTIONS'] = config_options return config
Parses an email URL.
Below is the the instruction that describes the task: ### Input: Parses an email URL. ### Response: def email_url_config(cls, url, backend=None): """Parses an email URL.""" config = {} url = urlparse(url) if not isinstance(url, cls.URL_CLASS) else url # Remove query strings path = url.path[1:] path = unquote_plus(path.split('?', 2)[0]) # Update with environment configuration config.update({ 'EMAIL_FILE_PATH': path, 'EMAIL_HOST_USER': _cast_urlstr(url.username), 'EMAIL_HOST_PASSWORD': _cast_urlstr(url.password), 'EMAIL_HOST': url.hostname, 'EMAIL_PORT': _cast_int(url.port), }) if backend: config['EMAIL_BACKEND'] = backend elif url.scheme not in cls.EMAIL_SCHEMES: raise ImproperlyConfigured('Invalid email schema %s' % url.scheme) elif url.scheme in cls.EMAIL_SCHEMES: config['EMAIL_BACKEND'] = cls.EMAIL_SCHEMES[url.scheme] if url.scheme in ('smtps', 'smtp+tls'): config['EMAIL_USE_TLS'] = True elif url.scheme == 'smtp+ssl': config['EMAIL_USE_SSL'] = True if url.query: config_options = {} for k, v in parse_qs(url.query).items(): opt = {k.upper(): _cast_int(v[0])} if k.upper() in cls._EMAIL_BASE_OPTIONS: config.update(opt) else: config_options.update(opt) config['OPTIONS'] = config_options return config
def get_for_nearest_ancestor(self, cls, attribute_name): """ Find a prior with the attribute analysis_path from the config for this class or one of its ancestors Parameters ---------- cls: class The class of interest attribute_name: String The analysis_path of the attribute Returns ------- prior_array: [] An array describing this prior """ for family_cls in family(cls): if self.has(family_cls.__module__, family_cls.__name__, attribute_name): return self.get(family_cls.__module__, family_cls.__name__, attribute_name) ini_filename = cls.__module__.split(".")[-1] raise exc.PriorException( "The prior config at {}/{} does not contain {} in {} or any of its parents".format(self.path, ini_filename, attribute_name, cls.__name__ ))
Find a prior with the attribute analysis_path from the config for this class or one of its ancestors Parameters ---------- cls: class The class of interest attribute_name: String The analysis_path of the attribute Returns ------- prior_array: [] An array describing this prior
Below is the the instruction that describes the task: ### Input: Find a prior with the attribute analysis_path from the config for this class or one of its ancestors Parameters ---------- cls: class The class of interest attribute_name: String The analysis_path of the attribute Returns ------- prior_array: [] An array describing this prior ### Response: def get_for_nearest_ancestor(self, cls, attribute_name): """ Find a prior with the attribute analysis_path from the config for this class or one of its ancestors Parameters ---------- cls: class The class of interest attribute_name: String The analysis_path of the attribute Returns ------- prior_array: [] An array describing this prior """ for family_cls in family(cls): if self.has(family_cls.__module__, family_cls.__name__, attribute_name): return self.get(family_cls.__module__, family_cls.__name__, attribute_name) ini_filename = cls.__module__.split(".")[-1] raise exc.PriorException( "The prior config at {}/{} does not contain {} in {} or any of its parents".format(self.path, ini_filename, attribute_name, cls.__name__ ))
def __regkey_value(self, path, name='', start_key=None): r'''Return the data of value mecabrc at MeCab HKEY node. On Windows, the path to the mecabrc as set in the Windows Registry is used to deduce the path to libmecab.dll. Returns: The full path to the mecabrc on Windows. Raises: WindowsError: A problem was encountered in trying to locate the value mecabrc at HKEY_CURRENT_USER\Software\MeCab. ''' if sys.version < '3': import _winreg as reg else: import winreg as reg def _fn(path, name='', start_key=None): if isinstance(path, str): path = path.split('\\') if start_key is None: start_key = getattr(reg, path[0]) return _fn(path[1:], name, start_key) else: subkey = path.pop(0) with reg.OpenKey(start_key, subkey) as handle: if path: return _fn(path, name, handle) else: desc, i = None, 0 while not desc or desc[0] != name: desc = reg.EnumValue(handle, i) i += 1 return desc[1] return _fn(path, name, start_key)
r'''Return the data of value mecabrc at MeCab HKEY node. On Windows, the path to the mecabrc as set in the Windows Registry is used to deduce the path to libmecab.dll. Returns: The full path to the mecabrc on Windows. Raises: WindowsError: A problem was encountered in trying to locate the value mecabrc at HKEY_CURRENT_USER\Software\MeCab.
Below is the the instruction that describes the task: ### Input: r'''Return the data of value mecabrc at MeCab HKEY node. On Windows, the path to the mecabrc as set in the Windows Registry is used to deduce the path to libmecab.dll. Returns: The full path to the mecabrc on Windows. Raises: WindowsError: A problem was encountered in trying to locate the value mecabrc at HKEY_CURRENT_USER\Software\MeCab. ### Response: def __regkey_value(self, path, name='', start_key=None): r'''Return the data of value mecabrc at MeCab HKEY node. On Windows, the path to the mecabrc as set in the Windows Registry is used to deduce the path to libmecab.dll. Returns: The full path to the mecabrc on Windows. Raises: WindowsError: A problem was encountered in trying to locate the value mecabrc at HKEY_CURRENT_USER\Software\MeCab. ''' if sys.version < '3': import _winreg as reg else: import winreg as reg def _fn(path, name='', start_key=None): if isinstance(path, str): path = path.split('\\') if start_key is None: start_key = getattr(reg, path[0]) return _fn(path[1:], name, start_key) else: subkey = path.pop(0) with reg.OpenKey(start_key, subkey) as handle: if path: return _fn(path, name, handle) else: desc, i = None, 0 while not desc or desc[0] != name: desc = reg.EnumValue(handle, i) i += 1 return desc[1] return _fn(path, name, start_key)
def get_questions(self, answered=None, honor_sequential=True, update=True): """gets all available questions for this section if answered == False: only return next unanswered question if answered == True: only return next answered question if answered in None: return next question whether answered or not if honor_sequential == True: only return questions if section or part is set to sequential items """ def update_question_list(): """Supportive function to aid readability of _get_questions.""" latest_question_response = question_map['responses'][0] question_answered = False # take missingResponse == UNANSWERED or NULL_RESPONSE as an unanswered question if 'missingResponse' not in latest_question_response: question_answered = True if answered is None or answered == question_answered: question_list.append(self.get_question(question_map=question_map)) return question_answered prev_question_answered = True question_list = [] if update: self._update_questions() # Make sure questions list is current for question_map in self._my_map['questions']: if self._is_question_sequential(question_map) and honor_sequential: if prev_question_answered: prev_question_answered = update_question_list() else: update_question_list() if self._my_map['actualStartTime'] is None: self._my_map['actualStartTime'] = DateTime.utcnow() return QuestionList(question_list, runtime=self._runtime, proxy=self._proxy)
gets all available questions for this section if answered == False: only return next unanswered question if answered == True: only return next answered question if answered in None: return next question whether answered or not if honor_sequential == True: only return questions if section or part is set to sequential items
Below is the the instruction that describes the task: ### Input: gets all available questions for this section if answered == False: only return next unanswered question if answered == True: only return next answered question if answered in None: return next question whether answered or not if honor_sequential == True: only return questions if section or part is set to sequential items ### Response: def get_questions(self, answered=None, honor_sequential=True, update=True): """gets all available questions for this section if answered == False: only return next unanswered question if answered == True: only return next answered question if answered in None: return next question whether answered or not if honor_sequential == True: only return questions if section or part is set to sequential items """ def update_question_list(): """Supportive function to aid readability of _get_questions.""" latest_question_response = question_map['responses'][0] question_answered = False # take missingResponse == UNANSWERED or NULL_RESPONSE as an unanswered question if 'missingResponse' not in latest_question_response: question_answered = True if answered is None or answered == question_answered: question_list.append(self.get_question(question_map=question_map)) return question_answered prev_question_answered = True question_list = [] if update: self._update_questions() # Make sure questions list is current for question_map in self._my_map['questions']: if self._is_question_sequential(question_map) and honor_sequential: if prev_question_answered: prev_question_answered = update_question_list() else: update_question_list() if self._my_map['actualStartTime'] is None: self._my_map['actualStartTime'] = DateTime.utcnow() return QuestionList(question_list, runtime=self._runtime, proxy=self._proxy)
def add_local(self, field_name, field): """Add a local variable in the current scope :field_name: The field's name :field: The field :returns: None """ self._dlog("adding local '{}'".format(field_name)) field._pfp__name = field_name # TODO do we allow clobbering of locals??? self._curr_scope["vars"][field_name] = field
Add a local variable in the current scope :field_name: The field's name :field: The field :returns: None
Below is the the instruction that describes the task: ### Input: Add a local variable in the current scope :field_name: The field's name :field: The field :returns: None ### Response: def add_local(self, field_name, field): """Add a local variable in the current scope :field_name: The field's name :field: The field :returns: None """ self._dlog("adding local '{}'".format(field_name)) field._pfp__name = field_name # TODO do we allow clobbering of locals??? self._curr_scope["vars"][field_name] = field
def apply(self, df): """Takes a pd.DataFrame and returns the newly defined column, i.e. a pd.Series that has the same index as `df`. """ if hasattr(self.definition, '__call__'): r = self.definition(df) elif self.definition in df.columns: r = df[self.definition] elif not isinstance(self.definition, string_types): r = pd.Series(self.definition, index=df.index) else: raise ValueError("Invalid column definition: %s" % str(self.definition)) return r.astype(self.astype) if self.astype else r
Takes a pd.DataFrame and returns the newly defined column, i.e. a pd.Series that has the same index as `df`.
Below is the the instruction that describes the task: ### Input: Takes a pd.DataFrame and returns the newly defined column, i.e. a pd.Series that has the same index as `df`. ### Response: def apply(self, df): """Takes a pd.DataFrame and returns the newly defined column, i.e. a pd.Series that has the same index as `df`. """ if hasattr(self.definition, '__call__'): r = self.definition(df) elif self.definition in df.columns: r = df[self.definition] elif not isinstance(self.definition, string_types): r = pd.Series(self.definition, index=df.index) else: raise ValueError("Invalid column definition: %s" % str(self.definition)) return r.astype(self.astype) if self.astype else r
def check_config_xml(self, contents): """ Check whether the given XML config file contents is well-formed and it has all the required parameters. :param string contents: the XML config file contents or XML config string :param bool is_config_string: if ``True``, contents is a config string :rtype: :class:`~aeneas.validator.ValidatorResult` """ self.log(u"Checking contents XML config file") self.result = ValidatorResult() if self._are_safety_checks_disabled(u"check_config_xml"): return self.result contents = gf.safe_bytes(contents) self.log(u"Checking that contents is well formed") self.check_raw_string(contents, is_bstring=True) if not self.result.passed: return self.result self.log(u"Checking required parameters for job") job_parameters = gf.config_xml_to_dict(contents, self.result, parse_job=True) self._check_required_parameters(self.XML_JOB_REQUIRED_PARAMETERS, job_parameters) if not self.result.passed: return self.result self.log(u"Checking required parameters for task") tasks_parameters = gf.config_xml_to_dict(contents, self.result, parse_job=False) for parameters in tasks_parameters: self.log([u"Checking required parameters for task: '%s'", parameters]) self._check_required_parameters(self.XML_TASK_REQUIRED_PARAMETERS, parameters) if not self.result.passed: return self.result return self.result
Check whether the given XML config file contents is well-formed and it has all the required parameters. :param string contents: the XML config file contents or XML config string :param bool is_config_string: if ``True``, contents is a config string :rtype: :class:`~aeneas.validator.ValidatorResult`
Below is the the instruction that describes the task: ### Input: Check whether the given XML config file contents is well-formed and it has all the required parameters. :param string contents: the XML config file contents or XML config string :param bool is_config_string: if ``True``, contents is a config string :rtype: :class:`~aeneas.validator.ValidatorResult` ### Response: def check_config_xml(self, contents): """ Check whether the given XML config file contents is well-formed and it has all the required parameters. :param string contents: the XML config file contents or XML config string :param bool is_config_string: if ``True``, contents is a config string :rtype: :class:`~aeneas.validator.ValidatorResult` """ self.log(u"Checking contents XML config file") self.result = ValidatorResult() if self._are_safety_checks_disabled(u"check_config_xml"): return self.result contents = gf.safe_bytes(contents) self.log(u"Checking that contents is well formed") self.check_raw_string(contents, is_bstring=True) if not self.result.passed: return self.result self.log(u"Checking required parameters for job") job_parameters = gf.config_xml_to_dict(contents, self.result, parse_job=True) self._check_required_parameters(self.XML_JOB_REQUIRED_PARAMETERS, job_parameters) if not self.result.passed: return self.result self.log(u"Checking required parameters for task") tasks_parameters = gf.config_xml_to_dict(contents, self.result, parse_job=False) for parameters in tasks_parameters: self.log([u"Checking required parameters for task: '%s'", parameters]) self._check_required_parameters(self.XML_TASK_REQUIRED_PARAMETERS, parameters) if not self.result.passed: return self.result return self.result
def create_project(self, key, name=None, assignee=None, type="Software", template_name=None): """Create a project with the specified parameters. :param key: Mandatory. Must match JIRA project key requirements, usually only 2-10 uppercase characters. :type: str :param name: If not specified it will use the key value. :type name: Optional[str] :param assignee: If not specified it will use current user. :type assignee: Optional[str] :param type: Determines the type of project should be created. :type type: Optional[str] :param template_name: is used to create a project based on one of the existing project templates. If `template_name` is not specified, then it should use one of the default values. :type template_name: Optional[str] :return: Should evaluate to False if it fails otherwise it will be the new project id. :rtype: Union[bool,int] """ if assignee is None: assignee = self.current_user() if name is None: name = key possible_templates = ['Basic', 'JIRA Classic', 'JIRA Default Schemes', 'Basic software development'] if template_name is not None: possible_templates = [template_name] # https://confluence.atlassian.com/jirakb/creating-a-project-via-rest-based-on-jira-default-schemes-744325852.html templates = self.templates() # TODO(ssbarnea): find a better logic to pick a default fallback template template_key = list(templates.values())[0]['projectTemplateModuleCompleteKey'] for template_name, template_dic in templates.items(): if template_name in possible_templates: template_key = template_dic['projectTemplateModuleCompleteKey'] break payload = {'name': name, 'key': key, 'keyEdited': 'false', # 'projectTemplate': 'com.atlassian.jira-core-project-templates:jira-issuetracking', # 'permissionScheme': '', 'projectTemplateWebItemKey': template_key, 'projectTemplateModuleKey': template_key, 'lead': assignee, # 'assigneeType': '2', } if self._version[0] > 6: # JIRA versions before 7 will throw an error if we specify type parameter payload['type'] = type headers = CaseInsensitiveDict( {'Content-Type': 'application/x-www-form-urlencoded'}) url = self._options['server'] + \ '/rest/project-templates/latest/templates' r = self._session.post(url, data=payload, headers=headers) if r.status_code == 200: r_json = json_loads(r) return r_json f = tempfile.NamedTemporaryFile( suffix='.html', prefix='python-jira-error-create-project-', delete=False) f.write(r.text) if self.logging: logging.error( "Unexpected result while running create project. Server response saved in %s for further investigation [HTTP response=%s]." % ( f.name, r.status_code)) return False
Create a project with the specified parameters. :param key: Mandatory. Must match JIRA project key requirements, usually only 2-10 uppercase characters. :type: str :param name: If not specified it will use the key value. :type name: Optional[str] :param assignee: If not specified it will use current user. :type assignee: Optional[str] :param type: Determines the type of project should be created. :type type: Optional[str] :param template_name: is used to create a project based on one of the existing project templates. If `template_name` is not specified, then it should use one of the default values. :type template_name: Optional[str] :return: Should evaluate to False if it fails otherwise it will be the new project id. :rtype: Union[bool,int]
Below is the the instruction that describes the task: ### Input: Create a project with the specified parameters. :param key: Mandatory. Must match JIRA project key requirements, usually only 2-10 uppercase characters. :type: str :param name: If not specified it will use the key value. :type name: Optional[str] :param assignee: If not specified it will use current user. :type assignee: Optional[str] :param type: Determines the type of project should be created. :type type: Optional[str] :param template_name: is used to create a project based on one of the existing project templates. If `template_name` is not specified, then it should use one of the default values. :type template_name: Optional[str] :return: Should evaluate to False if it fails otherwise it will be the new project id. :rtype: Union[bool,int] ### Response: def create_project(self, key, name=None, assignee=None, type="Software", template_name=None): """Create a project with the specified parameters. :param key: Mandatory. Must match JIRA project key requirements, usually only 2-10 uppercase characters. :type: str :param name: If not specified it will use the key value. :type name: Optional[str] :param assignee: If not specified it will use current user. :type assignee: Optional[str] :param type: Determines the type of project should be created. :type type: Optional[str] :param template_name: is used to create a project based on one of the existing project templates. If `template_name` is not specified, then it should use one of the default values. :type template_name: Optional[str] :return: Should evaluate to False if it fails otherwise it will be the new project id. :rtype: Union[bool,int] """ if assignee is None: assignee = self.current_user() if name is None: name = key possible_templates = ['Basic', 'JIRA Classic', 'JIRA Default Schemes', 'Basic software development'] if template_name is not None: possible_templates = [template_name] # https://confluence.atlassian.com/jirakb/creating-a-project-via-rest-based-on-jira-default-schemes-744325852.html templates = self.templates() # TODO(ssbarnea): find a better logic to pick a default fallback template template_key = list(templates.values())[0]['projectTemplateModuleCompleteKey'] for template_name, template_dic in templates.items(): if template_name in possible_templates: template_key = template_dic['projectTemplateModuleCompleteKey'] break payload = {'name': name, 'key': key, 'keyEdited': 'false', # 'projectTemplate': 'com.atlassian.jira-core-project-templates:jira-issuetracking', # 'permissionScheme': '', 'projectTemplateWebItemKey': template_key, 'projectTemplateModuleKey': template_key, 'lead': assignee, # 'assigneeType': '2', } if self._version[0] > 6: # JIRA versions before 7 will throw an error if we specify type parameter payload['type'] = type headers = CaseInsensitiveDict( {'Content-Type': 'application/x-www-form-urlencoded'}) url = self._options['server'] + \ '/rest/project-templates/latest/templates' r = self._session.post(url, data=payload, headers=headers) if r.status_code == 200: r_json = json_loads(r) return r_json f = tempfile.NamedTemporaryFile( suffix='.html', prefix='python-jira-error-create-project-', delete=False) f.write(r.text) if self.logging: logging.error( "Unexpected result while running create project. Server response saved in %s for further investigation [HTTP response=%s]." % ( f.name, r.status_code)) return False
def get_default_config(self): """ Returns the default collector settings """ config = super(OneWireCollector, self).get_default_config() config.update({ 'path': 'owfs', 'owfs': '/mnt/1wire', # 'scan': {'temperature': 't'}, # 'id:24.BB000000': {'file_with_value': 'alias'}, }) return config
Returns the default collector settings
Below is the the instruction that describes the task: ### Input: Returns the default collector settings ### Response: def get_default_config(self): """ Returns the default collector settings """ config = super(OneWireCollector, self).get_default_config() config.update({ 'path': 'owfs', 'owfs': '/mnt/1wire', # 'scan': {'temperature': 't'}, # 'id:24.BB000000': {'file_with_value': 'alias'}, }) return config
def fantope(x, rho, dim, tol=1e-4): """ Projection onto the fantope [1]_ .. [1] Vu, Vincent Q., et al. "Fantope projection and selection: A near-optimal convex relaxation of sparse PCA." Advances in neural information processing systems. 2013. """ U, V = np.linalg.eigh(x) minval, maxval = np.maximum(U.min(), 0), np.maximum(U.max(), 20 * dim) while True: theta = 0.5 * (maxval + minval) thr_eigvals = np.minimum(np.maximum((U - theta), 0), 1) constraint = np.sum(thr_eigvals) if np.abs(constraint - dim) <= tol: break elif constraint < dim: maxval = theta elif constraint > dim: minval = theta else: break return np.linalg.multi_dot((V, np.diag(thr_eigvals), V.T))
Projection onto the fantope [1]_ .. [1] Vu, Vincent Q., et al. "Fantope projection and selection: A near-optimal convex relaxation of sparse PCA." Advances in neural information processing systems. 2013.
Below is the the instruction that describes the task: ### Input: Projection onto the fantope [1]_ .. [1] Vu, Vincent Q., et al. "Fantope projection and selection: A near-optimal convex relaxation of sparse PCA." Advances in neural information processing systems. 2013. ### Response: def fantope(x, rho, dim, tol=1e-4): """ Projection onto the fantope [1]_ .. [1] Vu, Vincent Q., et al. "Fantope projection and selection: A near-optimal convex relaxation of sparse PCA." Advances in neural information processing systems. 2013. """ U, V = np.linalg.eigh(x) minval, maxval = np.maximum(U.min(), 0), np.maximum(U.max(), 20 * dim) while True: theta = 0.5 * (maxval + minval) thr_eigvals = np.minimum(np.maximum((U - theta), 0), 1) constraint = np.sum(thr_eigvals) if np.abs(constraint - dim) <= tol: break elif constraint < dim: maxval = theta elif constraint > dim: minval = theta else: break return np.linalg.multi_dot((V, np.diag(thr_eigvals), V.T))
def convertDirMP3ToWav(dirName, Fs, nC, useMp3TagsAsName = False): ''' This function converts the MP3 files stored in a folder to WAV. If required, the output names of the WAV files are based on MP3 tags, otherwise the same names are used. ARGUMENTS: - dirName: the path of the folder where the MP3s are stored - Fs: the sampling rate of the generated WAV files - nC: the number of channels of the generated WAV files - useMp3TagsAsName: True if the WAV filename is generated on MP3 tags ''' types = (dirName+os.sep+'*.mp3',) # the tuple of file types filesToProcess = [] for files in types: filesToProcess.extend(glob.glob(files)) for f in filesToProcess: #tag.link(f) audioFile = eyed3.load(f) if useMp3TagsAsName and audioFile.tag != None: artist = audioFile.tag.artist title = audioFile.tag.title if artist!=None and title!=None: if len(title)>0 and len(artist)>0: wavFileName = ntpath.split(f)[0] + os.sep + artist.replace(","," ") + " --- " + title.replace(","," ") + ".wav" else: wavFileName = f.replace(".mp3",".wav") else: wavFileName = f.replace(".mp3",".wav") else: wavFileName = f.replace(".mp3",".wav") command = "avconv -i \"" + f + "\" -ar " +str(Fs) + " -ac " + str(nC) + " \"" + wavFileName + "\""; print(command) os.system(command.decode('unicode_escape').encode('ascii','ignore').replace("\0",""))
This function converts the MP3 files stored in a folder to WAV. If required, the output names of the WAV files are based on MP3 tags, otherwise the same names are used. ARGUMENTS: - dirName: the path of the folder where the MP3s are stored - Fs: the sampling rate of the generated WAV files - nC: the number of channels of the generated WAV files - useMp3TagsAsName: True if the WAV filename is generated on MP3 tags
Below is the the instruction that describes the task: ### Input: This function converts the MP3 files stored in a folder to WAV. If required, the output names of the WAV files are based on MP3 tags, otherwise the same names are used. ARGUMENTS: - dirName: the path of the folder where the MP3s are stored - Fs: the sampling rate of the generated WAV files - nC: the number of channels of the generated WAV files - useMp3TagsAsName: True if the WAV filename is generated on MP3 tags ### Response: def convertDirMP3ToWav(dirName, Fs, nC, useMp3TagsAsName = False): ''' This function converts the MP3 files stored in a folder to WAV. If required, the output names of the WAV files are based on MP3 tags, otherwise the same names are used. ARGUMENTS: - dirName: the path of the folder where the MP3s are stored - Fs: the sampling rate of the generated WAV files - nC: the number of channels of the generated WAV files - useMp3TagsAsName: True if the WAV filename is generated on MP3 tags ''' types = (dirName+os.sep+'*.mp3',) # the tuple of file types filesToProcess = [] for files in types: filesToProcess.extend(glob.glob(files)) for f in filesToProcess: #tag.link(f) audioFile = eyed3.load(f) if useMp3TagsAsName and audioFile.tag != None: artist = audioFile.tag.artist title = audioFile.tag.title if artist!=None and title!=None: if len(title)>0 and len(artist)>0: wavFileName = ntpath.split(f)[0] + os.sep + artist.replace(","," ") + " --- " + title.replace(","," ") + ".wav" else: wavFileName = f.replace(".mp3",".wav") else: wavFileName = f.replace(".mp3",".wav") else: wavFileName = f.replace(".mp3",".wav") command = "avconv -i \"" + f + "\" -ar " +str(Fs) + " -ac " + str(nC) + " \"" + wavFileName + "\""; print(command) os.system(command.decode('unicode_escape').encode('ascii','ignore').replace("\0",""))
def DeleteGroup(r, group, dry_run=False): """ Deletes a node group. @type group: str @param group: the node group to delete @type dry_run: bool @param dry_run: whether to peform a dry run @rtype: int @return: job id """ query = { "dry-run": dry_run, } return r.request("delete", "/2/groups/%s" % group, query=query)
Deletes a node group. @type group: str @param group: the node group to delete @type dry_run: bool @param dry_run: whether to peform a dry run @rtype: int @return: job id
Below is the the instruction that describes the task: ### Input: Deletes a node group. @type group: str @param group: the node group to delete @type dry_run: bool @param dry_run: whether to peform a dry run @rtype: int @return: job id ### Response: def DeleteGroup(r, group, dry_run=False): """ Deletes a node group. @type group: str @param group: the node group to delete @type dry_run: bool @param dry_run: whether to peform a dry run @rtype: int @return: job id """ query = { "dry-run": dry_run, } return r.request("delete", "/2/groups/%s" % group, query=query)
def prepare_renderable(request, test_case_result, is_admin): """Return a completed Renderable.""" test_case = test_case_result.test_case file_directory = request.registry.settings['file_directory'] sha1 = test_case_result.diff.sha1 if test_case_result.diff else None kwargs = {'number': test_case.id, 'group': test_case.testable.name, 'name': test_case.name, 'points': test_case.points, 'status': test_case_result.status, 'extra': test_case_result.extra} if test_case.output_type == 'image': url = request.route_path('file_item', filename='_', _query={'raw': 1}, sha1sum=sha1) if sha1 else None return ImageOutput(url=url, **kwargs) elif test_case.output_type == 'text': content = None if sha1: with open(File.file_path(file_directory, sha1)) as fp: content = fp.read() return TextOutput(content=content, **kwargs) elif not test_case_result.diff: # Outputs match return DiffWithMetadata(diff=None, **kwargs) try: with open(File.file_path(file_directory, sha1)) as fp: diff = pickle.load(fp) except (AttributeError, EOFError): content = 'submit system mismatch -- requeue submission' content += traceback.format_exc(1) return TextOutput(content=content, **kwargs) except Exception: content = 'unexected error -- requeue submission\n' content += traceback.format_exc(1) return TextOutput(content=content, **kwargs) diff.hide_expected = not is_admin and test_case.hide_expected return DiffWithMetadata(diff=diff, **kwargs)
Return a completed Renderable.
Below is the the instruction that describes the task: ### Input: Return a completed Renderable. ### Response: def prepare_renderable(request, test_case_result, is_admin): """Return a completed Renderable.""" test_case = test_case_result.test_case file_directory = request.registry.settings['file_directory'] sha1 = test_case_result.diff.sha1 if test_case_result.diff else None kwargs = {'number': test_case.id, 'group': test_case.testable.name, 'name': test_case.name, 'points': test_case.points, 'status': test_case_result.status, 'extra': test_case_result.extra} if test_case.output_type == 'image': url = request.route_path('file_item', filename='_', _query={'raw': 1}, sha1sum=sha1) if sha1 else None return ImageOutput(url=url, **kwargs) elif test_case.output_type == 'text': content = None if sha1: with open(File.file_path(file_directory, sha1)) as fp: content = fp.read() return TextOutput(content=content, **kwargs) elif not test_case_result.diff: # Outputs match return DiffWithMetadata(diff=None, **kwargs) try: with open(File.file_path(file_directory, sha1)) as fp: diff = pickle.load(fp) except (AttributeError, EOFError): content = 'submit system mismatch -- requeue submission' content += traceback.format_exc(1) return TextOutput(content=content, **kwargs) except Exception: content = 'unexected error -- requeue submission\n' content += traceback.format_exc(1) return TextOutput(content=content, **kwargs) diff.hide_expected = not is_admin and test_case.hide_expected return DiffWithMetadata(diff=diff, **kwargs)
def git_url_ssh_to_https(url): """Convert a git url url will look like https://github.com/ARMmbed/mbed-cloud-sdk-python.git or git@github.com:ARMmbed/mbed-cloud-sdk-python.git we want: https://${GITHUB_TOKEN}@github.com/ARMmbed/mbed-cloud-sdk-python-private.git """ path = url.split('github.com', 1)[1][1:].strip() new = 'https://{GITHUB_TOKEN}@github.com/%s' % path print('rewriting git url to: %s' % new) return new.format(GITHUB_TOKEN=os.getenv('GITHUB_TOKEN'))
Convert a git url url will look like https://github.com/ARMmbed/mbed-cloud-sdk-python.git or git@github.com:ARMmbed/mbed-cloud-sdk-python.git we want: https://${GITHUB_TOKEN}@github.com/ARMmbed/mbed-cloud-sdk-python-private.git
Below is the the instruction that describes the task: ### Input: Convert a git url url will look like https://github.com/ARMmbed/mbed-cloud-sdk-python.git or git@github.com:ARMmbed/mbed-cloud-sdk-python.git we want: https://${GITHUB_TOKEN}@github.com/ARMmbed/mbed-cloud-sdk-python-private.git ### Response: def git_url_ssh_to_https(url): """Convert a git url url will look like https://github.com/ARMmbed/mbed-cloud-sdk-python.git or git@github.com:ARMmbed/mbed-cloud-sdk-python.git we want: https://${GITHUB_TOKEN}@github.com/ARMmbed/mbed-cloud-sdk-python-private.git """ path = url.split('github.com', 1)[1][1:].strip() new = 'https://{GITHUB_TOKEN}@github.com/%s' % path print('rewriting git url to: %s' % new) return new.format(GITHUB_TOKEN=os.getenv('GITHUB_TOKEN'))
def get_composite_reflectivity(self, tower_id, background='#000000', include_legend=True, include_counties=True, include_warnings=True, include_highways=True, include_cities=True, include_rivers=True, include_topography=True): """ Get the composite reflectivity for a noaa radar site. :param tower_id: The noaa tower id. Ex Huntsville, Al -> 'HTX'. :type tower_id: str :param background: The hex background color. :type background: str :param include_legend: True - include legend. :type include_legend: bool :param include_counties: True - include county lines. :type include_counties: bool :param include_warnings: True - include warning lines. :type include_warnings: bool :param include_highways: True - include highways. :type include_highways: bool :param include_cities: True - include city labels. :type include_cities: bool :param include_rivers: True - include rivers :type include_rivers: bool :param include_topography: True - include topography :type include_topography: bool :rtype: PIL.Image :return: A PIL.Image instance with the Radar composite reflectivity. """ return self._build_radar_image(tower_id, "NCR", background=background, include_legend=include_legend, include_counties=include_counties, include_warnings=include_warnings, include_highways=include_highways, include_cities=include_cities, include_rivers=include_rivers, include_topography=include_topography)
Get the composite reflectivity for a noaa radar site. :param tower_id: The noaa tower id. Ex Huntsville, Al -> 'HTX'. :type tower_id: str :param background: The hex background color. :type background: str :param include_legend: True - include legend. :type include_legend: bool :param include_counties: True - include county lines. :type include_counties: bool :param include_warnings: True - include warning lines. :type include_warnings: bool :param include_highways: True - include highways. :type include_highways: bool :param include_cities: True - include city labels. :type include_cities: bool :param include_rivers: True - include rivers :type include_rivers: bool :param include_topography: True - include topography :type include_topography: bool :rtype: PIL.Image :return: A PIL.Image instance with the Radar composite reflectivity.
Below is the the instruction that describes the task: ### Input: Get the composite reflectivity for a noaa radar site. :param tower_id: The noaa tower id. Ex Huntsville, Al -> 'HTX'. :type tower_id: str :param background: The hex background color. :type background: str :param include_legend: True - include legend. :type include_legend: bool :param include_counties: True - include county lines. :type include_counties: bool :param include_warnings: True - include warning lines. :type include_warnings: bool :param include_highways: True - include highways. :type include_highways: bool :param include_cities: True - include city labels. :type include_cities: bool :param include_rivers: True - include rivers :type include_rivers: bool :param include_topography: True - include topography :type include_topography: bool :rtype: PIL.Image :return: A PIL.Image instance with the Radar composite reflectivity. ### Response: def get_composite_reflectivity(self, tower_id, background='#000000', include_legend=True, include_counties=True, include_warnings=True, include_highways=True, include_cities=True, include_rivers=True, include_topography=True): """ Get the composite reflectivity for a noaa radar site. :param tower_id: The noaa tower id. Ex Huntsville, Al -> 'HTX'. :type tower_id: str :param background: The hex background color. :type background: str :param include_legend: True - include legend. :type include_legend: bool :param include_counties: True - include county lines. :type include_counties: bool :param include_warnings: True - include warning lines. :type include_warnings: bool :param include_highways: True - include highways. :type include_highways: bool :param include_cities: True - include city labels. :type include_cities: bool :param include_rivers: True - include rivers :type include_rivers: bool :param include_topography: True - include topography :type include_topography: bool :rtype: PIL.Image :return: A PIL.Image instance with the Radar composite reflectivity. """ return self._build_radar_image(tower_id, "NCR", background=background, include_legend=include_legend, include_counties=include_counties, include_warnings=include_warnings, include_highways=include_highways, include_cities=include_cities, include_rivers=include_rivers, include_topography=include_topography)
def get_key_from_envs(envs, key): """Return the value of a key from the given dict respecting namespaces. Data can also be a list of data dicts. """ # if it barks like a dict, make it a list have to use `get` since dicts and # lists both have __getitem__ if hasattr(envs, 'get'): envs = [envs] for env in envs: if key in env: return env[key] return NO_VALUE
Return the value of a key from the given dict respecting namespaces. Data can also be a list of data dicts.
Below is the the instruction that describes the task: ### Input: Return the value of a key from the given dict respecting namespaces. Data can also be a list of data dicts. ### Response: def get_key_from_envs(envs, key): """Return the value of a key from the given dict respecting namespaces. Data can also be a list of data dicts. """ # if it barks like a dict, make it a list have to use `get` since dicts and # lists both have __getitem__ if hasattr(envs, 'get'): envs = [envs] for env in envs: if key in env: return env[key] return NO_VALUE
def any2utf8(text, errors='strict', encoding='utf8'): """Convert a string (unicode or bytestring in `encoding`), to bytestring in utf8.""" if isinstance(text, unicode): return text.encode('utf8') # do bytestring -> unicode -> utf8 full circle, to ensure valid utf8 return unicode(text, encoding, errors=errors).encode('utf8')
Convert a string (unicode or bytestring in `encoding`), to bytestring in utf8.
Below is the the instruction that describes the task: ### Input: Convert a string (unicode or bytestring in `encoding`), to bytestring in utf8. ### Response: def any2utf8(text, errors='strict', encoding='utf8'): """Convert a string (unicode or bytestring in `encoding`), to bytestring in utf8.""" if isinstance(text, unicode): return text.encode('utf8') # do bytestring -> unicode -> utf8 full circle, to ensure valid utf8 return unicode(text, encoding, errors=errors).encode('utf8')
def list_stateful_set_for_all_namespaces(self, **kwargs): """ list or watch objects of kind StatefulSet This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.list_stateful_set_for_all_namespaces(async_req=True) >>> result = thread.get() :param async_req bool :param str _continue: The continue option should be set when retrieving more results from the server. Since this value is server defined, clients may only use the continue value from a previous query result with identical query parameters (except for the value of continue) and the server may reject a continue value it does not recognize. If the specified continue value is no longer valid whether due to expiration (generally five to fifteen minutes) or a configuration change on the server, the server will respond with a 410 ResourceExpired error together with a continue token. If the client needs a consistent list, it must restart their list without the continue field. Otherwise, the client may send another list request with the token received with the 410 error, the server will respond with a list starting from the next key, but from the latest snapshot, which is inconsistent from the previous list results - objects that are created, modified, or deleted after the first list request will be included in the response, as long as their keys are after the \"next key\". This field is not supported when watch is true. Clients may start a watch from the last resourceVersion value returned by the server and not miss any modifications. :param str field_selector: A selector to restrict the list of returned objects by their fields. Defaults to everything. :param str label_selector: A selector to restrict the list of returned objects by their labels. Defaults to everything. :param int limit: limit is a maximum number of responses to return for a list call. If more items exist, the server will set the `continue` field on the list metadata to a value that can be used with the same initial query to retrieve the next set of results. Setting a limit may return fewer than the requested amount of items (up to zero items) in the event all requested objects are filtered out and clients should only use the presence of the continue field to determine whether more results are available. Servers may choose not to support the limit argument and will return all of the available results. If limit is specified and the continue field is empty, clients may assume that no more results are available. This field is not supported if watch is true. The server guarantees that the objects returned when using continue will be identical to issuing a single list call without a limit - that is, no objects created, modified, or deleted after the first request is issued will be included in any subsequent continued requests. This is sometimes referred to as a consistent snapshot, and ensures that a client that is using limit to receive smaller chunks of a very large result can ensure they see all possible objects. If objects are updated during a chunked list the version of the object that was present at the time the first list result was calculated is returned. :param str pretty: If 'true', then the output is pretty printed. :param str resource_version: When specified with a watch call, shows changes that occur after that particular version of a resource. Defaults to changes from the beginning of history. When specified for list: - if unset, then the result is returned from remote storage based on quorum-read flag; - if it's 0, then we simply return what we currently have in cache, no guarantee; - if set to non zero, then the result is at least as fresh as given rv. :param int timeout_seconds: Timeout for the list/watch call. This limits the duration of the call, regardless of any activity or inactivity. :param bool watch: Watch for changes to the described resources and return them as a stream of add, update, and remove notifications. Specify resourceVersion. :return: V1StatefulSetList If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.list_stateful_set_for_all_namespaces_with_http_info(**kwargs) else: (data) = self.list_stateful_set_for_all_namespaces_with_http_info(**kwargs) return data
list or watch objects of kind StatefulSet This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.list_stateful_set_for_all_namespaces(async_req=True) >>> result = thread.get() :param async_req bool :param str _continue: The continue option should be set when retrieving more results from the server. Since this value is server defined, clients may only use the continue value from a previous query result with identical query parameters (except for the value of continue) and the server may reject a continue value it does not recognize. If the specified continue value is no longer valid whether due to expiration (generally five to fifteen minutes) or a configuration change on the server, the server will respond with a 410 ResourceExpired error together with a continue token. If the client needs a consistent list, it must restart their list without the continue field. Otherwise, the client may send another list request with the token received with the 410 error, the server will respond with a list starting from the next key, but from the latest snapshot, which is inconsistent from the previous list results - objects that are created, modified, or deleted after the first list request will be included in the response, as long as their keys are after the \"next key\". This field is not supported when watch is true. Clients may start a watch from the last resourceVersion value returned by the server and not miss any modifications. :param str field_selector: A selector to restrict the list of returned objects by their fields. Defaults to everything. :param str label_selector: A selector to restrict the list of returned objects by their labels. Defaults to everything. :param int limit: limit is a maximum number of responses to return for a list call. If more items exist, the server will set the `continue` field on the list metadata to a value that can be used with the same initial query to retrieve the next set of results. Setting a limit may return fewer than the requested amount of items (up to zero items) in the event all requested objects are filtered out and clients should only use the presence of the continue field to determine whether more results are available. Servers may choose not to support the limit argument and will return all of the available results. If limit is specified and the continue field is empty, clients may assume that no more results are available. This field is not supported if watch is true. The server guarantees that the objects returned when using continue will be identical to issuing a single list call without a limit - that is, no objects created, modified, or deleted after the first request is issued will be included in any subsequent continued requests. This is sometimes referred to as a consistent snapshot, and ensures that a client that is using limit to receive smaller chunks of a very large result can ensure they see all possible objects. If objects are updated during a chunked list the version of the object that was present at the time the first list result was calculated is returned. :param str pretty: If 'true', then the output is pretty printed. :param str resource_version: When specified with a watch call, shows changes that occur after that particular version of a resource. Defaults to changes from the beginning of history. When specified for list: - if unset, then the result is returned from remote storage based on quorum-read flag; - if it's 0, then we simply return what we currently have in cache, no guarantee; - if set to non zero, then the result is at least as fresh as given rv. :param int timeout_seconds: Timeout for the list/watch call. This limits the duration of the call, regardless of any activity or inactivity. :param bool watch: Watch for changes to the described resources and return them as a stream of add, update, and remove notifications. Specify resourceVersion. :return: V1StatefulSetList If the method is called asynchronously, returns the request thread.
Below is the the instruction that describes the task: ### Input: list or watch objects of kind StatefulSet This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.list_stateful_set_for_all_namespaces(async_req=True) >>> result = thread.get() :param async_req bool :param str _continue: The continue option should be set when retrieving more results from the server. Since this value is server defined, clients may only use the continue value from a previous query result with identical query parameters (except for the value of continue) and the server may reject a continue value it does not recognize. If the specified continue value is no longer valid whether due to expiration (generally five to fifteen minutes) or a configuration change on the server, the server will respond with a 410 ResourceExpired error together with a continue token. If the client needs a consistent list, it must restart their list without the continue field. Otherwise, the client may send another list request with the token received with the 410 error, the server will respond with a list starting from the next key, but from the latest snapshot, which is inconsistent from the previous list results - objects that are created, modified, or deleted after the first list request will be included in the response, as long as their keys are after the \"next key\". This field is not supported when watch is true. Clients may start a watch from the last resourceVersion value returned by the server and not miss any modifications. :param str field_selector: A selector to restrict the list of returned objects by their fields. Defaults to everything. :param str label_selector: A selector to restrict the list of returned objects by their labels. Defaults to everything. :param int limit: limit is a maximum number of responses to return for a list call. If more items exist, the server will set the `continue` field on the list metadata to a value that can be used with the same initial query to retrieve the next set of results. Setting a limit may return fewer than the requested amount of items (up to zero items) in the event all requested objects are filtered out and clients should only use the presence of the continue field to determine whether more results are available. Servers may choose not to support the limit argument and will return all of the available results. If limit is specified and the continue field is empty, clients may assume that no more results are available. This field is not supported if watch is true. The server guarantees that the objects returned when using continue will be identical to issuing a single list call without a limit - that is, no objects created, modified, or deleted after the first request is issued will be included in any subsequent continued requests. This is sometimes referred to as a consistent snapshot, and ensures that a client that is using limit to receive smaller chunks of a very large result can ensure they see all possible objects. If objects are updated during a chunked list the version of the object that was present at the time the first list result was calculated is returned. :param str pretty: If 'true', then the output is pretty printed. :param str resource_version: When specified with a watch call, shows changes that occur after that particular version of a resource. Defaults to changes from the beginning of history. When specified for list: - if unset, then the result is returned from remote storage based on quorum-read flag; - if it's 0, then we simply return what we currently have in cache, no guarantee; - if set to non zero, then the result is at least as fresh as given rv. :param int timeout_seconds: Timeout for the list/watch call. This limits the duration of the call, regardless of any activity or inactivity. :param bool watch: Watch for changes to the described resources and return them as a stream of add, update, and remove notifications. Specify resourceVersion. :return: V1StatefulSetList If the method is called asynchronously, returns the request thread. ### Response: def list_stateful_set_for_all_namespaces(self, **kwargs): """ list or watch objects of kind StatefulSet This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.list_stateful_set_for_all_namespaces(async_req=True) >>> result = thread.get() :param async_req bool :param str _continue: The continue option should be set when retrieving more results from the server. Since this value is server defined, clients may only use the continue value from a previous query result with identical query parameters (except for the value of continue) and the server may reject a continue value it does not recognize. If the specified continue value is no longer valid whether due to expiration (generally five to fifteen minutes) or a configuration change on the server, the server will respond with a 410 ResourceExpired error together with a continue token. If the client needs a consistent list, it must restart their list without the continue field. Otherwise, the client may send another list request with the token received with the 410 error, the server will respond with a list starting from the next key, but from the latest snapshot, which is inconsistent from the previous list results - objects that are created, modified, or deleted after the first list request will be included in the response, as long as their keys are after the \"next key\". This field is not supported when watch is true. Clients may start a watch from the last resourceVersion value returned by the server and not miss any modifications. :param str field_selector: A selector to restrict the list of returned objects by their fields. Defaults to everything. :param str label_selector: A selector to restrict the list of returned objects by their labels. Defaults to everything. :param int limit: limit is a maximum number of responses to return for a list call. If more items exist, the server will set the `continue` field on the list metadata to a value that can be used with the same initial query to retrieve the next set of results. Setting a limit may return fewer than the requested amount of items (up to zero items) in the event all requested objects are filtered out and clients should only use the presence of the continue field to determine whether more results are available. Servers may choose not to support the limit argument and will return all of the available results. If limit is specified and the continue field is empty, clients may assume that no more results are available. This field is not supported if watch is true. The server guarantees that the objects returned when using continue will be identical to issuing a single list call without a limit - that is, no objects created, modified, or deleted after the first request is issued will be included in any subsequent continued requests. This is sometimes referred to as a consistent snapshot, and ensures that a client that is using limit to receive smaller chunks of a very large result can ensure they see all possible objects. If objects are updated during a chunked list the version of the object that was present at the time the first list result was calculated is returned. :param str pretty: If 'true', then the output is pretty printed. :param str resource_version: When specified with a watch call, shows changes that occur after that particular version of a resource. Defaults to changes from the beginning of history. When specified for list: - if unset, then the result is returned from remote storage based on quorum-read flag; - if it's 0, then we simply return what we currently have in cache, no guarantee; - if set to non zero, then the result is at least as fresh as given rv. :param int timeout_seconds: Timeout for the list/watch call. This limits the duration of the call, regardless of any activity or inactivity. :param bool watch: Watch for changes to the described resources and return them as a stream of add, update, and remove notifications. Specify resourceVersion. :return: V1StatefulSetList If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.list_stateful_set_for_all_namespaces_with_http_info(**kwargs) else: (data) = self.list_stateful_set_for_all_namespaces_with_http_info(**kwargs) return data
async def evaluate_trained_model(state): """Evaluate the most recently trained model against the current best model. Args: state: the RL loop State instance. """ return await evaluate_model( state.train_model_path, state.best_model_path, os.path.join(fsdb.eval_dir(), state.train_model_name), state.seed)
Evaluate the most recently trained model against the current best model. Args: state: the RL loop State instance.
Below is the the instruction that describes the task: ### Input: Evaluate the most recently trained model against the current best model. Args: state: the RL loop State instance. ### Response: async def evaluate_trained_model(state): """Evaluate the most recently trained model against the current best model. Args: state: the RL loop State instance. """ return await evaluate_model( state.train_model_path, state.best_model_path, os.path.join(fsdb.eval_dir(), state.train_model_name), state.seed)
def excerpts(n_samples, n_excerpts=None, excerpt_size=None): """Yield (start, end) where start is included and end is excluded.""" assert n_excerpts >= 2 step = _excerpt_step(n_samples, n_excerpts=n_excerpts, excerpt_size=excerpt_size) for i in range(n_excerpts): start = i * step if start >= n_samples: break end = min(start + excerpt_size, n_samples) yield start, end
Yield (start, end) where start is included and end is excluded.
Below is the the instruction that describes the task: ### Input: Yield (start, end) where start is included and end is excluded. ### Response: def excerpts(n_samples, n_excerpts=None, excerpt_size=None): """Yield (start, end) where start is included and end is excluded.""" assert n_excerpts >= 2 step = _excerpt_step(n_samples, n_excerpts=n_excerpts, excerpt_size=excerpt_size) for i in range(n_excerpts): start = i * step if start >= n_samples: break end = min(start + excerpt_size, n_samples) yield start, end
def get_fields(model_class): """ Pass in a mongo model class and extract all the attributes which are mongoengine fields Returns: list of strings of field attributes """ return [ attr for attr, value in model_class.__dict__.items() if issubclass(type(value), (mongo.base.BaseField, mongo.EmbeddedDocumentField)) # noqa ]
Pass in a mongo model class and extract all the attributes which are mongoengine fields Returns: list of strings of field attributes
Below is the the instruction that describes the task: ### Input: Pass in a mongo model class and extract all the attributes which are mongoengine fields Returns: list of strings of field attributes ### Response: def get_fields(model_class): """ Pass in a mongo model class and extract all the attributes which are mongoengine fields Returns: list of strings of field attributes """ return [ attr for attr, value in model_class.__dict__.items() if issubclass(type(value), (mongo.base.BaseField, mongo.EmbeddedDocumentField)) # noqa ]
def serve(request, path, document_root=None, show_indexes=False, default=''): """ Serve static files below a given point in the directory structure. To use, put a URL pattern such as:: (r'^(?P<path>.*)$', 'django.views.static.serve', {'document_root' : '/path/to/my/files/'}) in your URLconf. You must provide the ``document_root`` param. You may also set ``show_indexes`` to ``True`` if you'd like to serve a basic index of the directory. This index view will use the template hardcoded below, but if you'd like to override it, you can create a template called ``static/directory_index.html``. Modified by ticket #1013 to serve index.html files in the same manner as Apache and other web servers. https://code.djangoproject.com/ticket/1013 """ # Clean up given path to only allow serving files below document_root. path = posixpath.normpath(unquote(path)) path = path.lstrip('/') newpath = '' for part in path.split('/'): if not part: # Strip empty path components. continue drive, part = os.path.splitdrive(part) head, part = os.path.split(part) if part in (os.curdir, os.pardir): # Strip '.' and '..' in path. continue newpath = os.path.join(newpath, part).replace('\\', '/') if newpath and path != newpath: return HttpResponseRedirect(newpath) fullpath = os.path.join(document_root, newpath) if os.path.isdir(fullpath) and default: defaultpath = os.path.join(fullpath, default) if os.path.exists(defaultpath): fullpath = defaultpath if os.path.isdir(fullpath): if show_indexes: return directory_index(newpath, fullpath) raise Http404("Directory indexes are not allowed here.") if not os.path.exists(fullpath): raise Http404('"%s" does not exist' % fullpath) # Respect the If-Modified-Since header. statobj = os.stat(fullpath) mimetype = mimetypes.guess_type(fullpath)[0] or 'application/octet-stream' if not was_modified_since(request.META.get('HTTP_IF_MODIFIED_SINCE'), statobj[stat.ST_MTIME], statobj[stat.ST_SIZE]): if django.VERSION > (1, 6): return HttpResponseNotModified(content_type=mimetype) else: return HttpResponseNotModified(mimetype=mimetype) contents = open(fullpath, 'rb').read() if django.VERSION > (1, 6): response = HttpResponse(contents, content_type=mimetype) else: response = HttpResponse(contents, mimetype=mimetype) response["Last-Modified"] = http_date(statobj[stat.ST_MTIME]) response["Content-Length"] = len(contents) return response
Serve static files below a given point in the directory structure. To use, put a URL pattern such as:: (r'^(?P<path>.*)$', 'django.views.static.serve', {'document_root' : '/path/to/my/files/'}) in your URLconf. You must provide the ``document_root`` param. You may also set ``show_indexes`` to ``True`` if you'd like to serve a basic index of the directory. This index view will use the template hardcoded below, but if you'd like to override it, you can create a template called ``static/directory_index.html``. Modified by ticket #1013 to serve index.html files in the same manner as Apache and other web servers. https://code.djangoproject.com/ticket/1013
Below is the the instruction that describes the task: ### Input: Serve static files below a given point in the directory structure. To use, put a URL pattern such as:: (r'^(?P<path>.*)$', 'django.views.static.serve', {'document_root' : '/path/to/my/files/'}) in your URLconf. You must provide the ``document_root`` param. You may also set ``show_indexes`` to ``True`` if you'd like to serve a basic index of the directory. This index view will use the template hardcoded below, but if you'd like to override it, you can create a template called ``static/directory_index.html``. Modified by ticket #1013 to serve index.html files in the same manner as Apache and other web servers. https://code.djangoproject.com/ticket/1013 ### Response: def serve(request, path, document_root=None, show_indexes=False, default=''): """ Serve static files below a given point in the directory structure. To use, put a URL pattern such as:: (r'^(?P<path>.*)$', 'django.views.static.serve', {'document_root' : '/path/to/my/files/'}) in your URLconf. You must provide the ``document_root`` param. You may also set ``show_indexes`` to ``True`` if you'd like to serve a basic index of the directory. This index view will use the template hardcoded below, but if you'd like to override it, you can create a template called ``static/directory_index.html``. Modified by ticket #1013 to serve index.html files in the same manner as Apache and other web servers. https://code.djangoproject.com/ticket/1013 """ # Clean up given path to only allow serving files below document_root. path = posixpath.normpath(unquote(path)) path = path.lstrip('/') newpath = '' for part in path.split('/'): if not part: # Strip empty path components. continue drive, part = os.path.splitdrive(part) head, part = os.path.split(part) if part in (os.curdir, os.pardir): # Strip '.' and '..' in path. continue newpath = os.path.join(newpath, part).replace('\\', '/') if newpath and path != newpath: return HttpResponseRedirect(newpath) fullpath = os.path.join(document_root, newpath) if os.path.isdir(fullpath) and default: defaultpath = os.path.join(fullpath, default) if os.path.exists(defaultpath): fullpath = defaultpath if os.path.isdir(fullpath): if show_indexes: return directory_index(newpath, fullpath) raise Http404("Directory indexes are not allowed here.") if not os.path.exists(fullpath): raise Http404('"%s" does not exist' % fullpath) # Respect the If-Modified-Since header. statobj = os.stat(fullpath) mimetype = mimetypes.guess_type(fullpath)[0] or 'application/octet-stream' if not was_modified_since(request.META.get('HTTP_IF_MODIFIED_SINCE'), statobj[stat.ST_MTIME], statobj[stat.ST_SIZE]): if django.VERSION > (1, 6): return HttpResponseNotModified(content_type=mimetype) else: return HttpResponseNotModified(mimetype=mimetype) contents = open(fullpath, 'rb').read() if django.VERSION > (1, 6): response = HttpResponse(contents, content_type=mimetype) else: response = HttpResponse(contents, mimetype=mimetype) response["Last-Modified"] = http_date(statobj[stat.ST_MTIME]) response["Content-Length"] = len(contents) return response
def isValidFeatureWriter(klass): """Return True if 'klass' is a valid feature writer class. A valid feature writer class is a class (of type 'type'), that has two required attributes: 1) 'tableTag' (str), which can be "GSUB", "GPOS", or other similar tags. 2) 'write' (bound method), with the signature matching the same method from the BaseFeatureWriter class: def write(self, font, feaFile, compiler=None) """ if not isclass(klass): logger.error("%r is not a class", klass) return False if not hasattr(klass, "tableTag"): logger.error("%r does not have required 'tableTag' attribute", klass) return False if not hasattr(klass, "write"): logger.error("%r does not have a required 'write' method", klass) return False if ( getargspec(klass.write).args != getargspec(BaseFeatureWriter.write).args ): logger.error("%r 'write' method has incorrect signature", klass) return False return True
Return True if 'klass' is a valid feature writer class. A valid feature writer class is a class (of type 'type'), that has two required attributes: 1) 'tableTag' (str), which can be "GSUB", "GPOS", or other similar tags. 2) 'write' (bound method), with the signature matching the same method from the BaseFeatureWriter class: def write(self, font, feaFile, compiler=None)
Below is the the instruction that describes the task: ### Input: Return True if 'klass' is a valid feature writer class. A valid feature writer class is a class (of type 'type'), that has two required attributes: 1) 'tableTag' (str), which can be "GSUB", "GPOS", or other similar tags. 2) 'write' (bound method), with the signature matching the same method from the BaseFeatureWriter class: def write(self, font, feaFile, compiler=None) ### Response: def isValidFeatureWriter(klass): """Return True if 'klass' is a valid feature writer class. A valid feature writer class is a class (of type 'type'), that has two required attributes: 1) 'tableTag' (str), which can be "GSUB", "GPOS", or other similar tags. 2) 'write' (bound method), with the signature matching the same method from the BaseFeatureWriter class: def write(self, font, feaFile, compiler=None) """ if not isclass(klass): logger.error("%r is not a class", klass) return False if not hasattr(klass, "tableTag"): logger.error("%r does not have required 'tableTag' attribute", klass) return False if not hasattr(klass, "write"): logger.error("%r does not have a required 'write' method", klass) return False if ( getargspec(klass.write).args != getargspec(BaseFeatureWriter.write).args ): logger.error("%r 'write' method has incorrect signature", klass) return False return True
def disp(self, idx=100): # r_[0:5,1e2:1e9:1e2,-10:0]): """displays selected data from (files written by) the class `CMADataLogger`. Arguments --------- `idx` indices corresponding to rows in the data file; if idx is a scalar (int), the first two, then every idx-th, and the last three rows are displayed. Too large index values are removed. Example ------- >>> import cma, numpy as np >>> res = cma.fmin(cma.fcts.elli, 7 * [0.1], 1, {'verb_disp':1e9}) # generate data >>> assert res[1] < 1e-9 >>> assert res[2] < 4400 >>> l = cma.CMADataLogger() # == res[-1], logger with default name, "points to" above data >>> l.disp([0,-1]) # first and last >>> l.disp(20) # some first/last and every 20-th line >>> l.disp(np.r_[0:999999:100, -1]) # every 100-th and last >>> l.disp(np.r_[0, -10:0]) # first and ten last >>> cma.disp(l.name_prefix, np.r_[0::100, -10:]) # the same as l.disp(...) Details ------- The data line with the best f-value is displayed as last line. :See: `disp()` """ filenameprefix = self.name_prefix def printdatarow(dat, iteration): """print data of iteration i""" i = np.where(dat.f[:, 0] == iteration)[0][0] j = np.where(dat.std[:, 0] == iteration)[0][0] print('%5d' % (int(dat.f[i, 0])) + ' %6d' % (int(dat.f[i, 1])) + ' %.14e' % (dat.f[i, 5]) + ' %5.1e' % (dat.f[i, 3]) + ' %6.2e' % (max(dat.std[j, 5:])) + ' %6.2e' % min(dat.std[j, 5:])) dat = CMADataLogger(filenameprefix).load() ndata = dat.f.shape[0] # map index to iteration number, is difficult if not all iteration numbers exist # idx = idx[np.where(map(lambda x: x in dat.f[:,0], idx))[0]] # TODO: takes pretty long # otherwise: if idx is None: idx = 100 if isscalar(idx): # idx = np.arange(0, ndata, idx) if idx: idx = np.r_[0, 1, idx:ndata - 3:idx, -3:0] else: idx = np.r_[0, 1, -3:0] idx = array(idx) idx = idx[idx < ndata] idx = idx[-idx <= ndata] iters = dat.f[idx, 0] idxbest = np.argmin(dat.f[:, 5]) iterbest = dat.f[idxbest, 0] if len(iters) == 1: printdatarow(dat, iters[0]) else: self.disp_header() for i in iters: printdatarow(dat, i) self.disp_header() printdatarow(dat, iterbest) sys.stdout.flush()
displays selected data from (files written by) the class `CMADataLogger`. Arguments --------- `idx` indices corresponding to rows in the data file; if idx is a scalar (int), the first two, then every idx-th, and the last three rows are displayed. Too large index values are removed. Example ------- >>> import cma, numpy as np >>> res = cma.fmin(cma.fcts.elli, 7 * [0.1], 1, {'verb_disp':1e9}) # generate data >>> assert res[1] < 1e-9 >>> assert res[2] < 4400 >>> l = cma.CMADataLogger() # == res[-1], logger with default name, "points to" above data >>> l.disp([0,-1]) # first and last >>> l.disp(20) # some first/last and every 20-th line >>> l.disp(np.r_[0:999999:100, -1]) # every 100-th and last >>> l.disp(np.r_[0, -10:0]) # first and ten last >>> cma.disp(l.name_prefix, np.r_[0::100, -10:]) # the same as l.disp(...) Details ------- The data line with the best f-value is displayed as last line. :See: `disp()`
Below is the the instruction that describes the task: ### Input: displays selected data from (files written by) the class `CMADataLogger`. Arguments --------- `idx` indices corresponding to rows in the data file; if idx is a scalar (int), the first two, then every idx-th, and the last three rows are displayed. Too large index values are removed. Example ------- >>> import cma, numpy as np >>> res = cma.fmin(cma.fcts.elli, 7 * [0.1], 1, {'verb_disp':1e9}) # generate data >>> assert res[1] < 1e-9 >>> assert res[2] < 4400 >>> l = cma.CMADataLogger() # == res[-1], logger with default name, "points to" above data >>> l.disp([0,-1]) # first and last >>> l.disp(20) # some first/last and every 20-th line >>> l.disp(np.r_[0:999999:100, -1]) # every 100-th and last >>> l.disp(np.r_[0, -10:0]) # first and ten last >>> cma.disp(l.name_prefix, np.r_[0::100, -10:]) # the same as l.disp(...) Details ------- The data line with the best f-value is displayed as last line. :See: `disp()` ### Response: def disp(self, idx=100): # r_[0:5,1e2:1e9:1e2,-10:0]): """displays selected data from (files written by) the class `CMADataLogger`. Arguments --------- `idx` indices corresponding to rows in the data file; if idx is a scalar (int), the first two, then every idx-th, and the last three rows are displayed. Too large index values are removed. Example ------- >>> import cma, numpy as np >>> res = cma.fmin(cma.fcts.elli, 7 * [0.1], 1, {'verb_disp':1e9}) # generate data >>> assert res[1] < 1e-9 >>> assert res[2] < 4400 >>> l = cma.CMADataLogger() # == res[-1], logger with default name, "points to" above data >>> l.disp([0,-1]) # first and last >>> l.disp(20) # some first/last and every 20-th line >>> l.disp(np.r_[0:999999:100, -1]) # every 100-th and last >>> l.disp(np.r_[0, -10:0]) # first and ten last >>> cma.disp(l.name_prefix, np.r_[0::100, -10:]) # the same as l.disp(...) Details ------- The data line with the best f-value is displayed as last line. :See: `disp()` """ filenameprefix = self.name_prefix def printdatarow(dat, iteration): """print data of iteration i""" i = np.where(dat.f[:, 0] == iteration)[0][0] j = np.where(dat.std[:, 0] == iteration)[0][0] print('%5d' % (int(dat.f[i, 0])) + ' %6d' % (int(dat.f[i, 1])) + ' %.14e' % (dat.f[i, 5]) + ' %5.1e' % (dat.f[i, 3]) + ' %6.2e' % (max(dat.std[j, 5:])) + ' %6.2e' % min(dat.std[j, 5:])) dat = CMADataLogger(filenameprefix).load() ndata = dat.f.shape[0] # map index to iteration number, is difficult if not all iteration numbers exist # idx = idx[np.where(map(lambda x: x in dat.f[:,0], idx))[0]] # TODO: takes pretty long # otherwise: if idx is None: idx = 100 if isscalar(idx): # idx = np.arange(0, ndata, idx) if idx: idx = np.r_[0, 1, idx:ndata - 3:idx, -3:0] else: idx = np.r_[0, 1, -3:0] idx = array(idx) idx = idx[idx < ndata] idx = idx[-idx <= ndata] iters = dat.f[idx, 0] idxbest = np.argmin(dat.f[:, 5]) iterbest = dat.f[idxbest, 0] if len(iters) == 1: printdatarow(dat, iters[0]) else: self.disp_header() for i in iters: printdatarow(dat, i) self.disp_header() printdatarow(dat, iterbest) sys.stdout.flush()
def get_dates_range(self, scale='auto', start=None, end=None, date_max='2010-01-01'): ''' Returns a list of dates sampled according to the specified parameters. :param scale: {'auto', 'maximum', 'daily', 'weekly', 'monthly', 'quarterly', 'yearly'} Scale specifies the sampling intervals. 'auto' will heuristically choose a scale for quick processing :param start: First date that will be included. :param end: Last date that will be included ''' if scale not in ['auto', 'maximum', 'daily', 'weekly', 'monthly', 'quarterly', 'yearly']: raise ValueError('Incorrect scale: %s' % scale) start = Timestamp(start or self._start.min() or date_max) # FIXME: start != start is true for NaN objects... is NaT the same? start = Timestamp(date_max) if repr(start) == 'NaT' else start end = Timestamp(end or max(Timestamp(self._end.max()), self._start.max())) # FIXME: end != end ? end = datetime.utcnow() if repr(end) == 'NaT' else end start = start if self.check_in_bounds(start) else self._lbound end = end if self.check_in_bounds(end) else self._rbound if scale == 'auto': scale = self._auto_select_scale(start, end) if scale == 'maximum': start_dts = list(self._start.dropna().values) end_dts = list(self._end.dropna().values) dts = map(Timestamp, set(start_dts + end_dts)) dts = filter(lambda ts: self.check_in_bounds(ts) and ts >= start and ts <= end, dts) return dts freq = dict(daily='D', weekly='W', monthly='M', quarterly='3M', yearly='12M') offset = dict(daily=off.Day(n=0), weekly=off.Week(), monthly=off.MonthEnd(), quarterly=off.QuarterEnd(), yearly=off.YearEnd()) # for some reason, weekly date range gives one week less: end_ = end + off.Week() if scale == 'weekly' else end ret = list(pd.date_range(start + offset[scale], end_, freq=freq[scale])) ret = [dt for dt in ret if dt <= end] ret = [start] + ret if ret and start < ret[0] else ret ret = ret + [end] if ret and end > ret[-1] else ret ret = filter(lambda ts: self.check_in_bounds(ts), ret) return ret
Returns a list of dates sampled according to the specified parameters. :param scale: {'auto', 'maximum', 'daily', 'weekly', 'monthly', 'quarterly', 'yearly'} Scale specifies the sampling intervals. 'auto' will heuristically choose a scale for quick processing :param start: First date that will be included. :param end: Last date that will be included
Below is the the instruction that describes the task: ### Input: Returns a list of dates sampled according to the specified parameters. :param scale: {'auto', 'maximum', 'daily', 'weekly', 'monthly', 'quarterly', 'yearly'} Scale specifies the sampling intervals. 'auto' will heuristically choose a scale for quick processing :param start: First date that will be included. :param end: Last date that will be included ### Response: def get_dates_range(self, scale='auto', start=None, end=None, date_max='2010-01-01'): ''' Returns a list of dates sampled according to the specified parameters. :param scale: {'auto', 'maximum', 'daily', 'weekly', 'monthly', 'quarterly', 'yearly'} Scale specifies the sampling intervals. 'auto' will heuristically choose a scale for quick processing :param start: First date that will be included. :param end: Last date that will be included ''' if scale not in ['auto', 'maximum', 'daily', 'weekly', 'monthly', 'quarterly', 'yearly']: raise ValueError('Incorrect scale: %s' % scale) start = Timestamp(start or self._start.min() or date_max) # FIXME: start != start is true for NaN objects... is NaT the same? start = Timestamp(date_max) if repr(start) == 'NaT' else start end = Timestamp(end or max(Timestamp(self._end.max()), self._start.max())) # FIXME: end != end ? end = datetime.utcnow() if repr(end) == 'NaT' else end start = start if self.check_in_bounds(start) else self._lbound end = end if self.check_in_bounds(end) else self._rbound if scale == 'auto': scale = self._auto_select_scale(start, end) if scale == 'maximum': start_dts = list(self._start.dropna().values) end_dts = list(self._end.dropna().values) dts = map(Timestamp, set(start_dts + end_dts)) dts = filter(lambda ts: self.check_in_bounds(ts) and ts >= start and ts <= end, dts) return dts freq = dict(daily='D', weekly='W', monthly='M', quarterly='3M', yearly='12M') offset = dict(daily=off.Day(n=0), weekly=off.Week(), monthly=off.MonthEnd(), quarterly=off.QuarterEnd(), yearly=off.YearEnd()) # for some reason, weekly date range gives one week less: end_ = end + off.Week() if scale == 'weekly' else end ret = list(pd.date_range(start + offset[scale], end_, freq=freq[scale])) ret = [dt for dt in ret if dt <= end] ret = [start] + ret if ret and start < ret[0] else ret ret = ret + [end] if ret and end > ret[-1] else ret ret = filter(lambda ts: self.check_in_bounds(ts), ret) return ret
def acts_as_state_machine(cls): """ a decorator which sets two properties on a class: * the 'current_state' property: a read-only property, returning the state machine's current state, as 'State' object * the 'states' property: a tuple of all valid state machine states, as 'State' objects class objects may use current_state and states freely :param cls: :return: """ assert not hasattr(cls, 'current_state'), '{0} already has a "current_state" attribute!'.format(cls) assert not hasattr(cls, 'states'), '{0} already has a "states" attribute!'.format(cls) def get_states(obj): return StateInfo.get_states(obj.__class__) def is_transition_failure_handler(obj): return all([ any([ inspect.ismethod(obj), # python2 inspect.isfunction(obj), # python3 ]), getattr(obj, '___pystatemachine_is_transition_failure_handler', False), ]) transition_failure_handlers = sorted( [value for name, value in inspect.getmembers(cls, is_transition_failure_handler)], key=lambda m: getattr(m, '___pystatemachine_transition_failure_handler_calling_sequence', 0), ) setattr(cls, '___pystatemachine_transition_failure_handlers', transition_failure_handlers) cls.current_state = property(fget=StateInfo.get_current_state) cls.states = property(fget=get_states) return cls
a decorator which sets two properties on a class: * the 'current_state' property: a read-only property, returning the state machine's current state, as 'State' object * the 'states' property: a tuple of all valid state machine states, as 'State' objects class objects may use current_state and states freely :param cls: :return:
Below is the the instruction that describes the task: ### Input: a decorator which sets two properties on a class: * the 'current_state' property: a read-only property, returning the state machine's current state, as 'State' object * the 'states' property: a tuple of all valid state machine states, as 'State' objects class objects may use current_state and states freely :param cls: :return: ### Response: def acts_as_state_machine(cls): """ a decorator which sets two properties on a class: * the 'current_state' property: a read-only property, returning the state machine's current state, as 'State' object * the 'states' property: a tuple of all valid state machine states, as 'State' objects class objects may use current_state and states freely :param cls: :return: """ assert not hasattr(cls, 'current_state'), '{0} already has a "current_state" attribute!'.format(cls) assert not hasattr(cls, 'states'), '{0} already has a "states" attribute!'.format(cls) def get_states(obj): return StateInfo.get_states(obj.__class__) def is_transition_failure_handler(obj): return all([ any([ inspect.ismethod(obj), # python2 inspect.isfunction(obj), # python3 ]), getattr(obj, '___pystatemachine_is_transition_failure_handler', False), ]) transition_failure_handlers = sorted( [value for name, value in inspect.getmembers(cls, is_transition_failure_handler)], key=lambda m: getattr(m, '___pystatemachine_transition_failure_handler_calling_sequence', 0), ) setattr(cls, '___pystatemachine_transition_failure_handlers', transition_failure_handlers) cls.current_state = property(fget=StateInfo.get_current_state) cls.states = property(fget=get_states) return cls
def power_cycle_vm(virtual_machine, action='on'): ''' Powers on/off a virtual machine specified by it's name. virtual_machine vim.VirtualMachine object to power on/off virtual machine action Operation option to power on/off the machine ''' if action == 'on': try: task = virtual_machine.PowerOn() task_name = 'power on' except vim.fault.NoPermission as exc: log.exception(exc) raise salt.exceptions.VMwareApiError( 'Not enough permissions. Required privilege: ' '{}'.format(exc.privilegeId)) except vim.fault.VimFault as exc: log.exception(exc) raise salt.exceptions.VMwareApiError(exc.msg) except vmodl.RuntimeFault as exc: log.exception(exc) raise salt.exceptions.VMwareRuntimeError(exc.msg) elif action == 'off': try: task = virtual_machine.PowerOff() task_name = 'power off' except vim.fault.NoPermission as exc: log.exception(exc) raise salt.exceptions.VMwareApiError( 'Not enough permissions. Required privilege: ' '{}'.format(exc.privilegeId)) except vim.fault.VimFault as exc: log.exception(exc) raise salt.exceptions.VMwareApiError(exc.msg) except vmodl.RuntimeFault as exc: log.exception(exc) raise salt.exceptions.VMwareRuntimeError(exc.msg) else: raise salt.exceptions.ArgumentValueError('The given action is not supported') try: wait_for_task(task, get_managed_object_name(virtual_machine), task_name) except salt.exceptions.VMwareFileNotFoundError as exc: raise salt.exceptions.VMwarePowerOnError(' '.join([ 'An error occurred during power', 'operation, a file was not found: {0}'.format(exc)])) return virtual_machine
Powers on/off a virtual machine specified by it's name. virtual_machine vim.VirtualMachine object to power on/off virtual machine action Operation option to power on/off the machine
Below is the the instruction that describes the task: ### Input: Powers on/off a virtual machine specified by it's name. virtual_machine vim.VirtualMachine object to power on/off virtual machine action Operation option to power on/off the machine ### Response: def power_cycle_vm(virtual_machine, action='on'): ''' Powers on/off a virtual machine specified by it's name. virtual_machine vim.VirtualMachine object to power on/off virtual machine action Operation option to power on/off the machine ''' if action == 'on': try: task = virtual_machine.PowerOn() task_name = 'power on' except vim.fault.NoPermission as exc: log.exception(exc) raise salt.exceptions.VMwareApiError( 'Not enough permissions. Required privilege: ' '{}'.format(exc.privilegeId)) except vim.fault.VimFault as exc: log.exception(exc) raise salt.exceptions.VMwareApiError(exc.msg) except vmodl.RuntimeFault as exc: log.exception(exc) raise salt.exceptions.VMwareRuntimeError(exc.msg) elif action == 'off': try: task = virtual_machine.PowerOff() task_name = 'power off' except vim.fault.NoPermission as exc: log.exception(exc) raise salt.exceptions.VMwareApiError( 'Not enough permissions. Required privilege: ' '{}'.format(exc.privilegeId)) except vim.fault.VimFault as exc: log.exception(exc) raise salt.exceptions.VMwareApiError(exc.msg) except vmodl.RuntimeFault as exc: log.exception(exc) raise salt.exceptions.VMwareRuntimeError(exc.msg) else: raise salt.exceptions.ArgumentValueError('The given action is not supported') try: wait_for_task(task, get_managed_object_name(virtual_machine), task_name) except salt.exceptions.VMwareFileNotFoundError as exc: raise salt.exceptions.VMwarePowerOnError(' '.join([ 'An error occurred during power', 'operation, a file was not found: {0}'.format(exc)])) return virtual_machine
def __fix_field_date(self, item, attribute): """Fix possible errors in the field date""" field_date = str_to_datetime(item[attribute]) try: _ = int(field_date.strftime("%z")[0:3]) except ValueError: logger.warning("%s in commit %s has a wrong format", attribute, item['commit']) item[attribute] = field_date.replace(tzinfo=None).isoformat()
Fix possible errors in the field date
Below is the the instruction that describes the task: ### Input: Fix possible errors in the field date ### Response: def __fix_field_date(self, item, attribute): """Fix possible errors in the field date""" field_date = str_to_datetime(item[attribute]) try: _ = int(field_date.strftime("%z")[0:3]) except ValueError: logger.warning("%s in commit %s has a wrong format", attribute, item['commit']) item[attribute] = field_date.replace(tzinfo=None).isoformat()
def date_from_number(self, value): """ Converts a float value to corresponding datetime instance. """ if not isinstance(value, numbers.Real): return None delta = datetime.timedelta(days=value) return self._null_date + delta
Converts a float value to corresponding datetime instance.
Below is the the instruction that describes the task: ### Input: Converts a float value to corresponding datetime instance. ### Response: def date_from_number(self, value): """ Converts a float value to corresponding datetime instance. """ if not isinstance(value, numbers.Real): return None delta = datetime.timedelta(days=value) return self._null_date + delta
def computePhase2(self, doLearn=False): """ This is the phase 2 of learning, inference and multistep prediction. During this phase, all the cell with lateral support have their predictedState turned on and the firing segments are queued up for updates. Parameters: -------------------------------------------- doLearn: Boolean flag to queue segment updates during learning retval: ? """ # Phase 2: compute predicted state for each cell # - if a segment has enough horizontal connections firing because of # bottomUpInput, it's set to be predicting, and we queue up the segment # for reinforcement, # - if pooling is on, try to find the best weakly activated segment to # reinforce it, else create a new pooling segment. for c in xrange(self.numberOfCols): buPredicted = False # whether any cell in the column is predicted for i in xrange(self.cellsPerColumn): # Iterate over each of the segments of this cell maxConfidence = 0 for s in self.cells[c][i]: # sum(connected synapses) >= activationThreshold? if self.isSegmentActive(s, self.activeState['t']): self.predictedState['t'][c,i] = 1 buPredicted = True maxConfidence = max(maxConfidence, s.dutyCycle(readOnly=True)) if doLearn: s.totalActivations += 1 # increment activationFrequency s.lastActiveIteration = self.iterationIdx # mark this segment for learning activeUpdate = self.getSegmentActiveSynapses(c,i,s,'t') activeUpdate.phase1Flag = False self.addToSegmentUpdates(c, i, activeUpdate) # Store the max confidence seen among all the weak and strong segments # as the cell's confidence. self.confidence['t'][c,i] = maxConfidence
This is the phase 2 of learning, inference and multistep prediction. During this phase, all the cell with lateral support have their predictedState turned on and the firing segments are queued up for updates. Parameters: -------------------------------------------- doLearn: Boolean flag to queue segment updates during learning retval: ?
Below is the the instruction that describes the task: ### Input: This is the phase 2 of learning, inference and multistep prediction. During this phase, all the cell with lateral support have their predictedState turned on and the firing segments are queued up for updates. Parameters: -------------------------------------------- doLearn: Boolean flag to queue segment updates during learning retval: ? ### Response: def computePhase2(self, doLearn=False): """ This is the phase 2 of learning, inference and multistep prediction. During this phase, all the cell with lateral support have their predictedState turned on and the firing segments are queued up for updates. Parameters: -------------------------------------------- doLearn: Boolean flag to queue segment updates during learning retval: ? """ # Phase 2: compute predicted state for each cell # - if a segment has enough horizontal connections firing because of # bottomUpInput, it's set to be predicting, and we queue up the segment # for reinforcement, # - if pooling is on, try to find the best weakly activated segment to # reinforce it, else create a new pooling segment. for c in xrange(self.numberOfCols): buPredicted = False # whether any cell in the column is predicted for i in xrange(self.cellsPerColumn): # Iterate over each of the segments of this cell maxConfidence = 0 for s in self.cells[c][i]: # sum(connected synapses) >= activationThreshold? if self.isSegmentActive(s, self.activeState['t']): self.predictedState['t'][c,i] = 1 buPredicted = True maxConfidence = max(maxConfidence, s.dutyCycle(readOnly=True)) if doLearn: s.totalActivations += 1 # increment activationFrequency s.lastActiveIteration = self.iterationIdx # mark this segment for learning activeUpdate = self.getSegmentActiveSynapses(c,i,s,'t') activeUpdate.phase1Flag = False self.addToSegmentUpdates(c, i, activeUpdate) # Store the max confidence seen among all the weak and strong segments # as the cell's confidence. self.confidence['t'][c,i] = maxConfidence
def row_factory(cursor, row): """Returns a sqlite row factory that returns a dictionary""" d = {} for idx, col in enumerate(cursor.description): d[col[0]] = row[idx] return d
Returns a sqlite row factory that returns a dictionary
Below is the the instruction that describes the task: ### Input: Returns a sqlite row factory that returns a dictionary ### Response: def row_factory(cursor, row): """Returns a sqlite row factory that returns a dictionary""" d = {} for idx, col in enumerate(cursor.description): d[col[0]] = row[idx] return d
def _interpolate_missing_data(data, mask, method='cubic'): """ Interpolate missing data as identified by the ``mask`` keyword. Parameters ---------- data : 2D `~numpy.ndarray` An array containing the 2D image. mask : 2D bool `~numpy.ndarray` A 2D booleen mask array with the same shape as the input ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. The masked data points are those that will be interpolated. method : {'cubic', 'nearest'}, optional The method of used to interpolate the missing data: * ``'cubic'``: Masked data are interpolated using 2D cubic splines. This is the default. * ``'nearest'``: Masked data are interpolated using nearest-neighbor interpolation. Returns ------- data_interp : 2D `~numpy.ndarray` The interpolated 2D image. """ from scipy import interpolate data_interp = np.array(data, copy=True) if len(data_interp.shape) != 2: raise ValueError('data must be a 2D array.') if mask.shape != data.shape: raise ValueError('mask and data must have the same shape.') y, x = np.indices(data_interp.shape) xy = np.dstack((x[~mask].ravel(), y[~mask].ravel()))[0] z = data_interp[~mask].ravel() if method == 'nearest': interpol = interpolate.NearestNDInterpolator(xy, z) elif method == 'cubic': interpol = interpolate.CloughTocher2DInterpolator(xy, z) else: raise ValueError('Unsupported interpolation method.') xy_missing = np.dstack((x[mask].ravel(), y[mask].ravel()))[0] data_interp[mask] = interpol(xy_missing) return data_interp
Interpolate missing data as identified by the ``mask`` keyword. Parameters ---------- data : 2D `~numpy.ndarray` An array containing the 2D image. mask : 2D bool `~numpy.ndarray` A 2D booleen mask array with the same shape as the input ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. The masked data points are those that will be interpolated. method : {'cubic', 'nearest'}, optional The method of used to interpolate the missing data: * ``'cubic'``: Masked data are interpolated using 2D cubic splines. This is the default. * ``'nearest'``: Masked data are interpolated using nearest-neighbor interpolation. Returns ------- data_interp : 2D `~numpy.ndarray` The interpolated 2D image.
Below is the the instruction that describes the task: ### Input: Interpolate missing data as identified by the ``mask`` keyword. Parameters ---------- data : 2D `~numpy.ndarray` An array containing the 2D image. mask : 2D bool `~numpy.ndarray` A 2D booleen mask array with the same shape as the input ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. The masked data points are those that will be interpolated. method : {'cubic', 'nearest'}, optional The method of used to interpolate the missing data: * ``'cubic'``: Masked data are interpolated using 2D cubic splines. This is the default. * ``'nearest'``: Masked data are interpolated using nearest-neighbor interpolation. Returns ------- data_interp : 2D `~numpy.ndarray` The interpolated 2D image. ### Response: def _interpolate_missing_data(data, mask, method='cubic'): """ Interpolate missing data as identified by the ``mask`` keyword. Parameters ---------- data : 2D `~numpy.ndarray` An array containing the 2D image. mask : 2D bool `~numpy.ndarray` A 2D booleen mask array with the same shape as the input ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. The masked data points are those that will be interpolated. method : {'cubic', 'nearest'}, optional The method of used to interpolate the missing data: * ``'cubic'``: Masked data are interpolated using 2D cubic splines. This is the default. * ``'nearest'``: Masked data are interpolated using nearest-neighbor interpolation. Returns ------- data_interp : 2D `~numpy.ndarray` The interpolated 2D image. """ from scipy import interpolate data_interp = np.array(data, copy=True) if len(data_interp.shape) != 2: raise ValueError('data must be a 2D array.') if mask.shape != data.shape: raise ValueError('mask and data must have the same shape.') y, x = np.indices(data_interp.shape) xy = np.dstack((x[~mask].ravel(), y[~mask].ravel()))[0] z = data_interp[~mask].ravel() if method == 'nearest': interpol = interpolate.NearestNDInterpolator(xy, z) elif method == 'cubic': interpol = interpolate.CloughTocher2DInterpolator(xy, z) else: raise ValueError('Unsupported interpolation method.') xy_missing = np.dstack((x[mask].ravel(), y[mask].ravel()))[0] data_interp[mask] = interpol(xy_missing) return data_interp
def copy_framebuffer(self, dst, src) -> None: ''' Copy framebuffer content. Use this method to: - blit framebuffers. - copy framebuffer content into a texture. - downsample framebuffers. (it will allow to read the framebuffer's content) - downsample a framebuffer directly to a texture. Args: dst (Framebuffer or Texture): Destination framebuffer or texture. src (Framebuffer): Source framebuffer. ''' self.mglo.copy_framebuffer(dst.mglo, src.mglo)
Copy framebuffer content. Use this method to: - blit framebuffers. - copy framebuffer content into a texture. - downsample framebuffers. (it will allow to read the framebuffer's content) - downsample a framebuffer directly to a texture. Args: dst (Framebuffer or Texture): Destination framebuffer or texture. src (Framebuffer): Source framebuffer.
Below is the the instruction that describes the task: ### Input: Copy framebuffer content. Use this method to: - blit framebuffers. - copy framebuffer content into a texture. - downsample framebuffers. (it will allow to read the framebuffer's content) - downsample a framebuffer directly to a texture. Args: dst (Framebuffer or Texture): Destination framebuffer or texture. src (Framebuffer): Source framebuffer. ### Response: def copy_framebuffer(self, dst, src) -> None: ''' Copy framebuffer content. Use this method to: - blit framebuffers. - copy framebuffer content into a texture. - downsample framebuffers. (it will allow to read the framebuffer's content) - downsample a framebuffer directly to a texture. Args: dst (Framebuffer or Texture): Destination framebuffer or texture. src (Framebuffer): Source framebuffer. ''' self.mglo.copy_framebuffer(dst.mglo, src.mglo)
def swipe_bottom(self, steps=10, *args, **selectors): """ Swipe the UI object with *selectors* from center to bottom See `Swipe Left` for more details. """ self.device(**selectors).swipe.down(steps=steps)
Swipe the UI object with *selectors* from center to bottom See `Swipe Left` for more details.
Below is the the instruction that describes the task: ### Input: Swipe the UI object with *selectors* from center to bottom See `Swipe Left` for more details. ### Response: def swipe_bottom(self, steps=10, *args, **selectors): """ Swipe the UI object with *selectors* from center to bottom See `Swipe Left` for more details. """ self.device(**selectors).swipe.down(steps=steps)
def normalize(arg=None): """Normalizes an argument for signing purpose. This is used for normalizing the arguments of RPC method calls. :param arg: The argument to normalize :return: A string representating the normalized argument. .. doctest:: >>> from cloud.rpc import normalize >>> normalize(['foo', 42, 'bar']) 'foo42bar' >>> normalize({'yellow': 1, 'red': 2, 'pink' : 3}) 'pink3red2yellow1' >>> normalize(['foo', 42, {'yellow': 1, 'red': 2, 'pink' : 3}, 'bar']) 'foo42pink3red2yellow1bar' >>> normalize(None) '' >>> normalize([None, 1,2]) '12' >>> normalize({2: [None, 1,2], 3: None, 4:5}) '212345' """ res = '' t_arg = type(arg) if t_arg in (list, tuple): for i in arg: res += normalize(i) elif t_arg is dict: keys = arg.keys() keys.sort() for key in keys: res += '%s%s' % (normalize(key), normalize(arg[key])) elif t_arg is unicode: res = arg.encode('utf8') elif t_arg is bool: res = 'true' if arg else 'false' elif arg != None: res = str(arg) return res
Normalizes an argument for signing purpose. This is used for normalizing the arguments of RPC method calls. :param arg: The argument to normalize :return: A string representating the normalized argument. .. doctest:: >>> from cloud.rpc import normalize >>> normalize(['foo', 42, 'bar']) 'foo42bar' >>> normalize({'yellow': 1, 'red': 2, 'pink' : 3}) 'pink3red2yellow1' >>> normalize(['foo', 42, {'yellow': 1, 'red': 2, 'pink' : 3}, 'bar']) 'foo42pink3red2yellow1bar' >>> normalize(None) '' >>> normalize([None, 1,2]) '12' >>> normalize({2: [None, 1,2], 3: None, 4:5}) '212345'
Below is the the instruction that describes the task: ### Input: Normalizes an argument for signing purpose. This is used for normalizing the arguments of RPC method calls. :param arg: The argument to normalize :return: A string representating the normalized argument. .. doctest:: >>> from cloud.rpc import normalize >>> normalize(['foo', 42, 'bar']) 'foo42bar' >>> normalize({'yellow': 1, 'red': 2, 'pink' : 3}) 'pink3red2yellow1' >>> normalize(['foo', 42, {'yellow': 1, 'red': 2, 'pink' : 3}, 'bar']) 'foo42pink3red2yellow1bar' >>> normalize(None) '' >>> normalize([None, 1,2]) '12' >>> normalize({2: [None, 1,2], 3: None, 4:5}) '212345' ### Response: def normalize(arg=None): """Normalizes an argument for signing purpose. This is used for normalizing the arguments of RPC method calls. :param arg: The argument to normalize :return: A string representating the normalized argument. .. doctest:: >>> from cloud.rpc import normalize >>> normalize(['foo', 42, 'bar']) 'foo42bar' >>> normalize({'yellow': 1, 'red': 2, 'pink' : 3}) 'pink3red2yellow1' >>> normalize(['foo', 42, {'yellow': 1, 'red': 2, 'pink' : 3}, 'bar']) 'foo42pink3red2yellow1bar' >>> normalize(None) '' >>> normalize([None, 1,2]) '12' >>> normalize({2: [None, 1,2], 3: None, 4:5}) '212345' """ res = '' t_arg = type(arg) if t_arg in (list, tuple): for i in arg: res += normalize(i) elif t_arg is dict: keys = arg.keys() keys.sort() for key in keys: res += '%s%s' % (normalize(key), normalize(arg[key])) elif t_arg is unicode: res = arg.encode('utf8') elif t_arg is bool: res = 'true' if arg else 'false' elif arg != None: res = str(arg) return res
def set_mtime(self, name, mtime, size): """Set modification time on file.""" self.check_write(name) os.utime(os.path.join(self.cur_dir, name), (-1, mtime))
Set modification time on file.
Below is the the instruction that describes the task: ### Input: Set modification time on file. ### Response: def set_mtime(self, name, mtime, size): """Set modification time on file.""" self.check_write(name) os.utime(os.path.join(self.cur_dir, name), (-1, mtime))
def to_json(self): """ :return: str """ json_dict = self.to_json_basic() json_dict['closed_channels'] = self.closed json_dict['opened_channels'] = self.opened json_dict['closed_long_channels'] = self.closed_long return json.dumps(json_dict)
:return: str
Below is the the instruction that describes the task: ### Input: :return: str ### Response: def to_json(self): """ :return: str """ json_dict = self.to_json_basic() json_dict['closed_channels'] = self.closed json_dict['opened_channels'] = self.opened json_dict['closed_long_channels'] = self.closed_long return json.dumps(json_dict)
def _reload(self, module=None): """Reload the source function from the source module. **Internal use only** Update the source function of the formula. This method is used to updated the underlying formula when the source code of the module in which the source function is read from is modified. If the formula was not created from a module, an error is raised. If ``module_`` is not given, the source module of the formula is reloaded. If ``module_`` is given and matches the source module, then the module_ is used without being reloaded. If ``module_`` is given and does not match the source module of the formula, an error is raised. Args: module_: A ``ModuleSource`` object Returns: self """ if self.module is None: raise RuntimeError elif module is None: import importlib module = ModuleSource(importlib.reload(module)) elif module.name != self.module: raise RuntimeError if self.name in module.funcs: func = module.funcs[self.name] self.__init__(func=func) else: self.__init__(func=NULL_FORMULA) return self
Reload the source function from the source module. **Internal use only** Update the source function of the formula. This method is used to updated the underlying formula when the source code of the module in which the source function is read from is modified. If the formula was not created from a module, an error is raised. If ``module_`` is not given, the source module of the formula is reloaded. If ``module_`` is given and matches the source module, then the module_ is used without being reloaded. If ``module_`` is given and does not match the source module of the formula, an error is raised. Args: module_: A ``ModuleSource`` object Returns: self
Below is the the instruction that describes the task: ### Input: Reload the source function from the source module. **Internal use only** Update the source function of the formula. This method is used to updated the underlying formula when the source code of the module in which the source function is read from is modified. If the formula was not created from a module, an error is raised. If ``module_`` is not given, the source module of the formula is reloaded. If ``module_`` is given and matches the source module, then the module_ is used without being reloaded. If ``module_`` is given and does not match the source module of the formula, an error is raised. Args: module_: A ``ModuleSource`` object Returns: self ### Response: def _reload(self, module=None): """Reload the source function from the source module. **Internal use only** Update the source function of the formula. This method is used to updated the underlying formula when the source code of the module in which the source function is read from is modified. If the formula was not created from a module, an error is raised. If ``module_`` is not given, the source module of the formula is reloaded. If ``module_`` is given and matches the source module, then the module_ is used without being reloaded. If ``module_`` is given and does not match the source module of the formula, an error is raised. Args: module_: A ``ModuleSource`` object Returns: self """ if self.module is None: raise RuntimeError elif module is None: import importlib module = ModuleSource(importlib.reload(module)) elif module.name != self.module: raise RuntimeError if self.name in module.funcs: func = module.funcs[self.name] self.__init__(func=func) else: self.__init__(func=NULL_FORMULA) return self
def lastOfferedMonth(self): ''' Sometimes a Series is associated with a month other than the one in which the first class begins, so this returns a (year,month) tuple that can be used in admin instead. ''' lastOfferedSeries = self.event_set.order_by('-startTime').first() return (lastOfferedSeries.year,lastOfferedSeries.month)
Sometimes a Series is associated with a month other than the one in which the first class begins, so this returns a (year,month) tuple that can be used in admin instead.
Below is the the instruction that describes the task: ### Input: Sometimes a Series is associated with a month other than the one in which the first class begins, so this returns a (year,month) tuple that can be used in admin instead. ### Response: def lastOfferedMonth(self): ''' Sometimes a Series is associated with a month other than the one in which the first class begins, so this returns a (year,month) tuple that can be used in admin instead. ''' lastOfferedSeries = self.event_set.order_by('-startTime').first() return (lastOfferedSeries.year,lastOfferedSeries.month)
def clean_username(self, username): """ Performs any cleaning on the "username" prior to using it to get or create the user object. Returns the cleaned username. By default, changes the username case according to `settings.CAS_FORCE_CHANGE_USERNAME_CASE`. """ username_case = settings.CAS_FORCE_CHANGE_USERNAME_CASE if username_case == 'lower': username = username.lower() elif username_case == 'upper': username = username.upper() elif username_case is not None: raise ImproperlyConfigured( "Invalid value for the CAS_FORCE_CHANGE_USERNAME_CASE setting. " "Valid values are `'lower'`, `'upper'`, and `None`.") return username
Performs any cleaning on the "username" prior to using it to get or create the user object. Returns the cleaned username. By default, changes the username case according to `settings.CAS_FORCE_CHANGE_USERNAME_CASE`.
Below is the the instruction that describes the task: ### Input: Performs any cleaning on the "username" prior to using it to get or create the user object. Returns the cleaned username. By default, changes the username case according to `settings.CAS_FORCE_CHANGE_USERNAME_CASE`. ### Response: def clean_username(self, username): """ Performs any cleaning on the "username" prior to using it to get or create the user object. Returns the cleaned username. By default, changes the username case according to `settings.CAS_FORCE_CHANGE_USERNAME_CASE`. """ username_case = settings.CAS_FORCE_CHANGE_USERNAME_CASE if username_case == 'lower': username = username.lower() elif username_case == 'upper': username = username.upper() elif username_case is not None: raise ImproperlyConfigured( "Invalid value for the CAS_FORCE_CHANGE_USERNAME_CASE setting. " "Valid values are `'lower'`, `'upper'`, and `None`.") return username
def _retrieve(self, namespace, stream, start_id, end_time, order, limit, configuration): """ Retrieve events for `stream` between `start_id` and `end_time`. `stream` : The stream to return events for. `start_id` : Return events with id > `start_id`. `end_time` : Return events ending <= `end_time`. `order` : Whether to return the results in ResultOrder.ASCENDING or ResultOrder.DESCENDING time-order. `configuration` : A dictionary of settings to override any default settings, such as number of shards or width of a time interval. """ stream = self.get_stream(namespace, stream, configuration) events = stream.iterator(start_id, uuid_from_kronos_time(end_time, _type=UUIDType.HIGHEST), order == ResultOrder.DESCENDING, limit) events = events.__iter__() event = events.next() # If first event's ID is equal to `start_id`, skip it. if event.id != start_id: yield event.json while True: yield events.next().json
Retrieve events for `stream` between `start_id` and `end_time`. `stream` : The stream to return events for. `start_id` : Return events with id > `start_id`. `end_time` : Return events ending <= `end_time`. `order` : Whether to return the results in ResultOrder.ASCENDING or ResultOrder.DESCENDING time-order. `configuration` : A dictionary of settings to override any default settings, such as number of shards or width of a time interval.
Below is the the instruction that describes the task: ### Input: Retrieve events for `stream` between `start_id` and `end_time`. `stream` : The stream to return events for. `start_id` : Return events with id > `start_id`. `end_time` : Return events ending <= `end_time`. `order` : Whether to return the results in ResultOrder.ASCENDING or ResultOrder.DESCENDING time-order. `configuration` : A dictionary of settings to override any default settings, such as number of shards or width of a time interval. ### Response: def _retrieve(self, namespace, stream, start_id, end_time, order, limit, configuration): """ Retrieve events for `stream` between `start_id` and `end_time`. `stream` : The stream to return events for. `start_id` : Return events with id > `start_id`. `end_time` : Return events ending <= `end_time`. `order` : Whether to return the results in ResultOrder.ASCENDING or ResultOrder.DESCENDING time-order. `configuration` : A dictionary of settings to override any default settings, such as number of shards or width of a time interval. """ stream = self.get_stream(namespace, stream, configuration) events = stream.iterator(start_id, uuid_from_kronos_time(end_time, _type=UUIDType.HIGHEST), order == ResultOrder.DESCENDING, limit) events = events.__iter__() event = events.next() # If first event's ID is equal to `start_id`, skip it. if event.id != start_id: yield event.json while True: yield events.next().json
def build_struct_type(s_sdt): ''' Build an xsd complexType out of a S_SDT. ''' s_dt = nav_one(s_sdt).S_DT[17]() struct = ET.Element('xs:complexType', name=s_dt.name) first_filter = lambda selected: not nav_one(selected).S_MBR[46, 'succeeds']() s_mbr = nav_any(s_sdt).S_MBR[44](first_filter) while s_mbr: s_dt = nav_one(s_mbr).S_DT[45]() type_name = get_type_name(s_dt) ET.SubElement(struct, 'xs:attribute', name=s_mbr.name, type=type_name) s_mbr = nav_one(s_mbr).S_MBR[46, 'precedes']() return struct
Build an xsd complexType out of a S_SDT.
Below is the the instruction that describes the task: ### Input: Build an xsd complexType out of a S_SDT. ### Response: def build_struct_type(s_sdt): ''' Build an xsd complexType out of a S_SDT. ''' s_dt = nav_one(s_sdt).S_DT[17]() struct = ET.Element('xs:complexType', name=s_dt.name) first_filter = lambda selected: not nav_one(selected).S_MBR[46, 'succeeds']() s_mbr = nav_any(s_sdt).S_MBR[44](first_filter) while s_mbr: s_dt = nav_one(s_mbr).S_DT[45]() type_name = get_type_name(s_dt) ET.SubElement(struct, 'xs:attribute', name=s_mbr.name, type=type_name) s_mbr = nav_one(s_mbr).S_MBR[46, 'precedes']() return struct
def add_node(self, kind, image_id, image_user, flavor, security_group, image_userdata='', name=None, **extra): """ Adds a new node to the cluster. This factory method provides an easy way to add a new node to the cluster by specifying all relevant parameters. The node does not get started nor setup automatically, this has to be done manually afterwards. :param str kind: kind of node to start. this refers to the groups defined in the ansible setup provider :py:class:`elasticluster.providers.AnsibleSetupProvider` Please note that this can only contain alphanumeric characters and hyphens (and must not end with a digit), as it is used to build a valid hostname :param str image_id: image id to use for the cloud instance (e.g. ami on amazon) :param str image_user: user to login on given image :param str flavor: machine type to use for cloud instance :param str security_group: security group that defines firewall rules to the instance :param str image_userdata: commands to execute after instance starts :param str name: name of this node, automatically generated if None :raises: ValueError: `kind` argument is an invalid string. :return: created :py:class:`Node` """ if not self._NODE_KIND_RE.match(kind): raise ValueError( "Invalid name `{kind}`. The `kind` argument may only contain" " alphanumeric characters, and must not end with a digit." .format(kind=kind)) if kind not in self.nodes: self.nodes[kind] = [] # To ease json dump/load, use `extra` dictionary to # instantiate Node class extra.update( cloud_provider=self._cloud_provider, cluster_name=self.name, flavor=flavor, image_id=image_id, image_user=image_user, image_userdata=image_userdata, kind=kind, security_group=security_group, ) for attr in ( 'flavor', 'image_id', 'image_user', 'image_userdata', 'security_group', 'user_key_name', 'user_key_private', 'user_key_public', ): if attr not in extra: extra[attr] = getattr(self, attr) if not name: # `extra` contains key `kind` already name = self._naming_policy.new(**extra) else: self._naming_policy.use(kind, name) node = Node(name=name, **extra) self.nodes[kind].append(node) return node
Adds a new node to the cluster. This factory method provides an easy way to add a new node to the cluster by specifying all relevant parameters. The node does not get started nor setup automatically, this has to be done manually afterwards. :param str kind: kind of node to start. this refers to the groups defined in the ansible setup provider :py:class:`elasticluster.providers.AnsibleSetupProvider` Please note that this can only contain alphanumeric characters and hyphens (and must not end with a digit), as it is used to build a valid hostname :param str image_id: image id to use for the cloud instance (e.g. ami on amazon) :param str image_user: user to login on given image :param str flavor: machine type to use for cloud instance :param str security_group: security group that defines firewall rules to the instance :param str image_userdata: commands to execute after instance starts :param str name: name of this node, automatically generated if None :raises: ValueError: `kind` argument is an invalid string. :return: created :py:class:`Node`
Below is the the instruction that describes the task: ### Input: Adds a new node to the cluster. This factory method provides an easy way to add a new node to the cluster by specifying all relevant parameters. The node does not get started nor setup automatically, this has to be done manually afterwards. :param str kind: kind of node to start. this refers to the groups defined in the ansible setup provider :py:class:`elasticluster.providers.AnsibleSetupProvider` Please note that this can only contain alphanumeric characters and hyphens (and must not end with a digit), as it is used to build a valid hostname :param str image_id: image id to use for the cloud instance (e.g. ami on amazon) :param str image_user: user to login on given image :param str flavor: machine type to use for cloud instance :param str security_group: security group that defines firewall rules to the instance :param str image_userdata: commands to execute after instance starts :param str name: name of this node, automatically generated if None :raises: ValueError: `kind` argument is an invalid string. :return: created :py:class:`Node` ### Response: def add_node(self, kind, image_id, image_user, flavor, security_group, image_userdata='', name=None, **extra): """ Adds a new node to the cluster. This factory method provides an easy way to add a new node to the cluster by specifying all relevant parameters. The node does not get started nor setup automatically, this has to be done manually afterwards. :param str kind: kind of node to start. this refers to the groups defined in the ansible setup provider :py:class:`elasticluster.providers.AnsibleSetupProvider` Please note that this can only contain alphanumeric characters and hyphens (and must not end with a digit), as it is used to build a valid hostname :param str image_id: image id to use for the cloud instance (e.g. ami on amazon) :param str image_user: user to login on given image :param str flavor: machine type to use for cloud instance :param str security_group: security group that defines firewall rules to the instance :param str image_userdata: commands to execute after instance starts :param str name: name of this node, automatically generated if None :raises: ValueError: `kind` argument is an invalid string. :return: created :py:class:`Node` """ if not self._NODE_KIND_RE.match(kind): raise ValueError( "Invalid name `{kind}`. The `kind` argument may only contain" " alphanumeric characters, and must not end with a digit." .format(kind=kind)) if kind not in self.nodes: self.nodes[kind] = [] # To ease json dump/load, use `extra` dictionary to # instantiate Node class extra.update( cloud_provider=self._cloud_provider, cluster_name=self.name, flavor=flavor, image_id=image_id, image_user=image_user, image_userdata=image_userdata, kind=kind, security_group=security_group, ) for attr in ( 'flavor', 'image_id', 'image_user', 'image_userdata', 'security_group', 'user_key_name', 'user_key_private', 'user_key_public', ): if attr not in extra: extra[attr] = getattr(self, attr) if not name: # `extra` contains key `kind` already name = self._naming_policy.new(**extra) else: self._naming_policy.use(kind, name) node = Node(name=name, **extra) self.nodes[kind].append(node) return node
def refresh(self, accept=MEDIA_TYPE_TAXII_V20): """Update the API Root's information and list of Collections""" self.refresh_information(accept) self.refresh_collections(accept)
Update the API Root's information and list of Collections
Below is the the instruction that describes the task: ### Input: Update the API Root's information and list of Collections ### Response: def refresh(self, accept=MEDIA_TYPE_TAXII_V20): """Update the API Root's information and list of Collections""" self.refresh_information(accept) self.refresh_collections(accept)
def _summarize_in_roi(self, label_mask, num_clusters_per_roi=1, metric='minkowski'): """returns a single row summarizing (typically via mean) all rows in an ROI.""" this_label = self.carpet[label_mask.flatten(), :] if num_clusters_per_roi == 1: out_matrix = self._summary_func(this_label, axis=0) else: out_matrix = self._make_clusters(this_label, num_clusters_per_roi, metric) return out_matrix
returns a single row summarizing (typically via mean) all rows in an ROI.
Below is the the instruction that describes the task: ### Input: returns a single row summarizing (typically via mean) all rows in an ROI. ### Response: def _summarize_in_roi(self, label_mask, num_clusters_per_roi=1, metric='minkowski'): """returns a single row summarizing (typically via mean) all rows in an ROI.""" this_label = self.carpet[label_mask.flatten(), :] if num_clusters_per_roi == 1: out_matrix = self._summary_func(this_label, axis=0) else: out_matrix = self._make_clusters(this_label, num_clusters_per_roi, metric) return out_matrix
def _mem(self): """Record Memory usage.""" value = int(psutil.virtual_memory().percent) set_metric("memory", value, category=self.category) gauge("memory", value)
Record Memory usage.
Below is the the instruction that describes the task: ### Input: Record Memory usage. ### Response: def _mem(self): """Record Memory usage.""" value = int(psutil.virtual_memory().percent) set_metric("memory", value, category=self.category) gauge("memory", value)
def _parse_processor_embedded_health(self, data): """Parse the get_host_health_data() for essential properties :param data: the output returned by get_host_health_data() :returns: processor details like cpu arch and number of cpus. """ processor = self.get_value_as_list((data['GET_EMBEDDED_HEALTH_DATA'] ['PROCESSORS']), 'PROCESSOR') if processor is None: msg = "Unable to get cpu data. Error: Data missing" raise exception.IloError(msg) cpus = 0 for proc in processor: for val in proc.values(): processor_detail = val['VALUE'] proc_core_threads = processor_detail.split('; ') for x in proc_core_threads: if "thread" in x: v = x.split() try: cpus = cpus + int(v[0]) except ValueError: msg = ("Unable to get cpu data. " "The Value %s returned couldn't be " "manipulated to get number of " "actual processors" % processor_detail) raise exception.IloError(msg) cpu_arch = 'x86_64' return cpus, cpu_arch
Parse the get_host_health_data() for essential properties :param data: the output returned by get_host_health_data() :returns: processor details like cpu arch and number of cpus.
Below is the the instruction that describes the task: ### Input: Parse the get_host_health_data() for essential properties :param data: the output returned by get_host_health_data() :returns: processor details like cpu arch and number of cpus. ### Response: def _parse_processor_embedded_health(self, data): """Parse the get_host_health_data() for essential properties :param data: the output returned by get_host_health_data() :returns: processor details like cpu arch and number of cpus. """ processor = self.get_value_as_list((data['GET_EMBEDDED_HEALTH_DATA'] ['PROCESSORS']), 'PROCESSOR') if processor is None: msg = "Unable to get cpu data. Error: Data missing" raise exception.IloError(msg) cpus = 0 for proc in processor: for val in proc.values(): processor_detail = val['VALUE'] proc_core_threads = processor_detail.split('; ') for x in proc_core_threads: if "thread" in x: v = x.split() try: cpus = cpus + int(v[0]) except ValueError: msg = ("Unable to get cpu data. " "The Value %s returned couldn't be " "manipulated to get number of " "actual processors" % processor_detail) raise exception.IloError(msg) cpu_arch = 'x86_64' return cpus, cpu_arch
def noise_set_type(n: tcod.noise.Noise, typ: int) -> None: """Set a Noise objects default noise algorithm. Args: typ (int): Any NOISE_* constant. """ n.algorithm = typ
Set a Noise objects default noise algorithm. Args: typ (int): Any NOISE_* constant.
Below is the the instruction that describes the task: ### Input: Set a Noise objects default noise algorithm. Args: typ (int): Any NOISE_* constant. ### Response: def noise_set_type(n: tcod.noise.Noise, typ: int) -> None: """Set a Noise objects default noise algorithm. Args: typ (int): Any NOISE_* constant. """ n.algorithm = typ
def update_project(config, task_presenter, results, long_description, tutorial, watch): # pragma: no cover """Update project templates and information.""" if watch: res = _update_project_watch(config, task_presenter, results, long_description, tutorial) else: res = _update_project(config, task_presenter, results, long_description, tutorial) click.echo(res)
Update project templates and information.
Below is the the instruction that describes the task: ### Input: Update project templates and information. ### Response: def update_project(config, task_presenter, results, long_description, tutorial, watch): # pragma: no cover """Update project templates and information.""" if watch: res = _update_project_watch(config, task_presenter, results, long_description, tutorial) else: res = _update_project(config, task_presenter, results, long_description, tutorial) click.echo(res)
def send_alert_to_configured_integration(integration_alert): """Send IntegrationAlert to configured integration.""" try: alert = integration_alert.alert configured_integration = integration_alert.configured_integration integration = configured_integration.integration integration_actions_instance = configured_integration.integration.module alert_fields = dict() if integration.required_fields: if not all([hasattr(alert, _) for _ in integration.required_fields]): logger.debug("Alert does not have all required_fields (%s) for integration %s, skipping", integration.required_fields, integration.name) return exclude_fields = ["alert_type", "service_type"] alert_fields = {} for field in alert.__slots__: if hasattr(alert, field) and field not in exclude_fields: alert_fields[field] = getattr(alert, field) logger.debug("Sending alert %s to %s", alert_fields, integration.name) output_data, output_file_content = integration_actions_instance.send_event(alert_fields) if integration.polling_enabled: integration_alert.status = IntegrationAlertStatuses.POLLING.name polling_integration_alerts.append(integration_alert) else: integration_alert.status = IntegrationAlertStatuses.DONE.name integration_alert.send_time = get_current_datetime_utc() integration_alert.output_data = json.dumps(output_data) # TODO: do something with successfully handled alerts? They are all written to debug log file except exceptions.IntegrationMissingRequiredFieldError as exc: logger.exception("Send response formatting for integration alert %s failed. Missing required fields", integration_alert, exc.message) integration_alert.status = IntegrationAlertStatuses.ERROR_MISSING_SEND_FIELDS.name except exceptions.IntegrationOutputFormatError: logger.exception("Send response formatting for integration alert %s failed", integration_alert) integration_alert.status = IntegrationAlertStatuses.ERROR_SENDING_FORMATTING.name except exceptions.IntegrationSendEventError as exc: integration_send_retries = integration_alert.retries if integration_alert.retries <= MAX_SEND_RETRIES \ else MAX_SEND_RETRIES # making sure we do not exceed celery max retries send_retries_left = integration_send_retries - 1 integration_alert.retries = send_retries_left logger.error("Sending integration alert %s failed. Message: %s. Retries left: %s", integration_alert, exc.message, send_retries_left) if send_retries_left == 0: integration_alert.status = IntegrationAlertStatuses.ERROR_SENDING.name if send_retries_left > 0: sleep(SEND_ALERT_DATA_INTERVAL) send_alert_to_configured_integration(integration_alert)
Send IntegrationAlert to configured integration.
Below is the the instruction that describes the task: ### Input: Send IntegrationAlert to configured integration. ### Response: def send_alert_to_configured_integration(integration_alert): """Send IntegrationAlert to configured integration.""" try: alert = integration_alert.alert configured_integration = integration_alert.configured_integration integration = configured_integration.integration integration_actions_instance = configured_integration.integration.module alert_fields = dict() if integration.required_fields: if not all([hasattr(alert, _) for _ in integration.required_fields]): logger.debug("Alert does not have all required_fields (%s) for integration %s, skipping", integration.required_fields, integration.name) return exclude_fields = ["alert_type", "service_type"] alert_fields = {} for field in alert.__slots__: if hasattr(alert, field) and field not in exclude_fields: alert_fields[field] = getattr(alert, field) logger.debug("Sending alert %s to %s", alert_fields, integration.name) output_data, output_file_content = integration_actions_instance.send_event(alert_fields) if integration.polling_enabled: integration_alert.status = IntegrationAlertStatuses.POLLING.name polling_integration_alerts.append(integration_alert) else: integration_alert.status = IntegrationAlertStatuses.DONE.name integration_alert.send_time = get_current_datetime_utc() integration_alert.output_data = json.dumps(output_data) # TODO: do something with successfully handled alerts? They are all written to debug log file except exceptions.IntegrationMissingRequiredFieldError as exc: logger.exception("Send response formatting for integration alert %s failed. Missing required fields", integration_alert, exc.message) integration_alert.status = IntegrationAlertStatuses.ERROR_MISSING_SEND_FIELDS.name except exceptions.IntegrationOutputFormatError: logger.exception("Send response formatting for integration alert %s failed", integration_alert) integration_alert.status = IntegrationAlertStatuses.ERROR_SENDING_FORMATTING.name except exceptions.IntegrationSendEventError as exc: integration_send_retries = integration_alert.retries if integration_alert.retries <= MAX_SEND_RETRIES \ else MAX_SEND_RETRIES # making sure we do not exceed celery max retries send_retries_left = integration_send_retries - 1 integration_alert.retries = send_retries_left logger.error("Sending integration alert %s failed. Message: %s. Retries left: %s", integration_alert, exc.message, send_retries_left) if send_retries_left == 0: integration_alert.status = IntegrationAlertStatuses.ERROR_SENDING.name if send_retries_left > 0: sleep(SEND_ALERT_DATA_INTERVAL) send_alert_to_configured_integration(integration_alert)
def _fix_key(key): '''Normalize keys to Unicode strings.''' if isinstance(key, unicode): return key if isinstance(key, str): # On my system, the default encoding is `ascii`, so let's # explicitly say UTF-8? return unicode(key, 'utf-8') raise TypeError(key)
Normalize keys to Unicode strings.
Below is the the instruction that describes the task: ### Input: Normalize keys to Unicode strings. ### Response: def _fix_key(key): '''Normalize keys to Unicode strings.''' if isinstance(key, unicode): return key if isinstance(key, str): # On my system, the default encoding is `ascii`, so let's # explicitly say UTF-8? return unicode(key, 'utf-8') raise TypeError(key)
def select_with_correspondence( self, selector, result_selector=KeyedElement): '''Apply a callable to each element in an input sequence, generating a new sequence of 2-tuples where the first element is the input value and the second is the transformed input value. The generated sequence is lazily evaluated. Note: This method uses deferred execution. Args: selector: A unary function mapping a value in the source sequence to the second argument of the result selector. result_selector: A binary callable mapping the of a value in the source sequence and the transformed value to the corresponding value in the generated sequence. The two positional arguments of the selector function are the original source element and the transformed value. The return value should be the corresponding value in the result sequence. The default selector produces a KeyedElement containing the index and the element giving this function similar behaviour to the built-in enumerate(). Returns: When using the default selector, a Queryable whose elements are KeyedElements where the first element is from the input sequence and the second is the result of invoking the transform function on the first value. Raises: ValueError: If this Queryable has been closed. TypeError: If transform is not callable. ''' if self.closed(): raise ValueError("Attempt to call select_with_correspondence() on a " "closed Queryable.") if not is_callable(selector): raise TypeError("select_with_correspondence() parameter selector={0} is " "not callable".format(repr(selector))) if not is_callable(result_selector): raise TypeError("select_with_correspondence() parameter result_selector={0} is " "not callable".format(repr(result_selector))) return self._create(result_selector(elem, selector(elem)) for elem in iter(self))
Apply a callable to each element in an input sequence, generating a new sequence of 2-tuples where the first element is the input value and the second is the transformed input value. The generated sequence is lazily evaluated. Note: This method uses deferred execution. Args: selector: A unary function mapping a value in the source sequence to the second argument of the result selector. result_selector: A binary callable mapping the of a value in the source sequence and the transformed value to the corresponding value in the generated sequence. The two positional arguments of the selector function are the original source element and the transformed value. The return value should be the corresponding value in the result sequence. The default selector produces a KeyedElement containing the index and the element giving this function similar behaviour to the built-in enumerate(). Returns: When using the default selector, a Queryable whose elements are KeyedElements where the first element is from the input sequence and the second is the result of invoking the transform function on the first value. Raises: ValueError: If this Queryable has been closed. TypeError: If transform is not callable.
Below is the the instruction that describes the task: ### Input: Apply a callable to each element in an input sequence, generating a new sequence of 2-tuples where the first element is the input value and the second is the transformed input value. The generated sequence is lazily evaluated. Note: This method uses deferred execution. Args: selector: A unary function mapping a value in the source sequence to the second argument of the result selector. result_selector: A binary callable mapping the of a value in the source sequence and the transformed value to the corresponding value in the generated sequence. The two positional arguments of the selector function are the original source element and the transformed value. The return value should be the corresponding value in the result sequence. The default selector produces a KeyedElement containing the index and the element giving this function similar behaviour to the built-in enumerate(). Returns: When using the default selector, a Queryable whose elements are KeyedElements where the first element is from the input sequence and the second is the result of invoking the transform function on the first value. Raises: ValueError: If this Queryable has been closed. TypeError: If transform is not callable. ### Response: def select_with_correspondence( self, selector, result_selector=KeyedElement): '''Apply a callable to each element in an input sequence, generating a new sequence of 2-tuples where the first element is the input value and the second is the transformed input value. The generated sequence is lazily evaluated. Note: This method uses deferred execution. Args: selector: A unary function mapping a value in the source sequence to the second argument of the result selector. result_selector: A binary callable mapping the of a value in the source sequence and the transformed value to the corresponding value in the generated sequence. The two positional arguments of the selector function are the original source element and the transformed value. The return value should be the corresponding value in the result sequence. The default selector produces a KeyedElement containing the index and the element giving this function similar behaviour to the built-in enumerate(). Returns: When using the default selector, a Queryable whose elements are KeyedElements where the first element is from the input sequence and the second is the result of invoking the transform function on the first value. Raises: ValueError: If this Queryable has been closed. TypeError: If transform is not callable. ''' if self.closed(): raise ValueError("Attempt to call select_with_correspondence() on a " "closed Queryable.") if not is_callable(selector): raise TypeError("select_with_correspondence() parameter selector={0} is " "not callable".format(repr(selector))) if not is_callable(result_selector): raise TypeError("select_with_correspondence() parameter result_selector={0} is " "not callable".format(repr(result_selector))) return self._create(result_selector(elem, selector(elem)) for elem in iter(self))
def delete(self, run_id): """ Delete all metrics belonging to the given run. :param run_id: ID of the Run that the metric belongs to. """ self.generic_dao.delete_record( self.metrics_collection_name, {"run_id": self._parse_run_id(run_id)})
Delete all metrics belonging to the given run. :param run_id: ID of the Run that the metric belongs to.
Below is the the instruction that describes the task: ### Input: Delete all metrics belonging to the given run. :param run_id: ID of the Run that the metric belongs to. ### Response: def delete(self, run_id): """ Delete all metrics belonging to the given run. :param run_id: ID of the Run that the metric belongs to. """ self.generic_dao.delete_record( self.metrics_collection_name, {"run_id": self._parse_run_id(run_id)})
def acquire(self, signal=True): """ Locks the account. Method has no effect if the constructor argument `needs_lock` wsa set to False. :type signal: bool :param signal: Whether to emit the acquired_event signal. """ if not self.needs_lock: return with self.synclock: while not self.lock.acquire(False): self.synclock.wait() if signal: self.acquired_event(self) self.synclock.notify_all()
Locks the account. Method has no effect if the constructor argument `needs_lock` wsa set to False. :type signal: bool :param signal: Whether to emit the acquired_event signal.
Below is the the instruction that describes the task: ### Input: Locks the account. Method has no effect if the constructor argument `needs_lock` wsa set to False. :type signal: bool :param signal: Whether to emit the acquired_event signal. ### Response: def acquire(self, signal=True): """ Locks the account. Method has no effect if the constructor argument `needs_lock` wsa set to False. :type signal: bool :param signal: Whether to emit the acquired_event signal. """ if not self.needs_lock: return with self.synclock: while not self.lock.acquire(False): self.synclock.wait() if signal: self.acquired_event(self) self.synclock.notify_all()
def _combine_indexers(old_key, shape, new_key): """ Combine two indexers. Parameters ---------- old_key: ExplicitIndexer The first indexer for the original array shape: tuple of ints Shape of the original array to be indexed by old_key new_key: The second indexer for indexing original[old_key] """ if not isinstance(old_key, VectorizedIndexer): old_key = _outer_to_vectorized_indexer(old_key, shape) if len(old_key.tuple) == 0: return new_key new_shape = np.broadcast(*old_key.tuple).shape if isinstance(new_key, VectorizedIndexer): new_key = _arrayize_vectorized_indexer(new_key, new_shape) else: new_key = _outer_to_vectorized_indexer(new_key, new_shape) return VectorizedIndexer(tuple(o[new_key.tuple] for o in np.broadcast_arrays(*old_key.tuple)))
Combine two indexers. Parameters ---------- old_key: ExplicitIndexer The first indexer for the original array shape: tuple of ints Shape of the original array to be indexed by old_key new_key: The second indexer for indexing original[old_key]
Below is the the instruction that describes the task: ### Input: Combine two indexers. Parameters ---------- old_key: ExplicitIndexer The first indexer for the original array shape: tuple of ints Shape of the original array to be indexed by old_key new_key: The second indexer for indexing original[old_key] ### Response: def _combine_indexers(old_key, shape, new_key): """ Combine two indexers. Parameters ---------- old_key: ExplicitIndexer The first indexer for the original array shape: tuple of ints Shape of the original array to be indexed by old_key new_key: The second indexer for indexing original[old_key] """ if not isinstance(old_key, VectorizedIndexer): old_key = _outer_to_vectorized_indexer(old_key, shape) if len(old_key.tuple) == 0: return new_key new_shape = np.broadcast(*old_key.tuple).shape if isinstance(new_key, VectorizedIndexer): new_key = _arrayize_vectorized_indexer(new_key, new_shape) else: new_key = _outer_to_vectorized_indexer(new_key, new_shape) return VectorizedIndexer(tuple(o[new_key.tuple] for o in np.broadcast_arrays(*old_key.tuple)))
def stop(self, timeout=5): """ Stop the container. The container must have been created. :param timeout: Timeout in seconds to wait for the container to stop before sending a ``SIGKILL``. Default: 5 (half the Docker default) """ self.inner().stop(timeout=timeout) self.inner().reload()
Stop the container. The container must have been created. :param timeout: Timeout in seconds to wait for the container to stop before sending a ``SIGKILL``. Default: 5 (half the Docker default)
Below is the the instruction that describes the task: ### Input: Stop the container. The container must have been created. :param timeout: Timeout in seconds to wait for the container to stop before sending a ``SIGKILL``. Default: 5 (half the Docker default) ### Response: def stop(self, timeout=5): """ Stop the container. The container must have been created. :param timeout: Timeout in seconds to wait for the container to stop before sending a ``SIGKILL``. Default: 5 (half the Docker default) """ self.inner().stop(timeout=timeout) self.inner().reload()
def doigrf(lon, lat, alt, date, **kwargs): """ Calculates the interpolated (<2015) or extrapolated (>2015) main field and secular variation coefficients and passes them to the Malin and Barraclough routine (function pmag.magsyn) to calculate the field from the coefficients. Parameters: ----------- lon : east longitude in degrees (0 to 360 or -180 to 180) lat : latitude in degrees (-90 to 90) alt : height above mean sea level in km (itype = 1 assumed) date : Required date in years and decimals of a year (A.D.) Optional Parameters: ----------- coeffs : if True, then return the gh coefficients mod : model to use ('arch3k','cals3k','pfm9k','hfm10k','cals10k.2','cals10k.1b','shadif14k') arch3k (Korte et al., 2009) cals3k (Korte and Constable, 2011) cals10k.1b (Korte et al., 2011) pfm9k (Nilsson et al., 2014) hfm.OL1.A1 (Constable et al., 2016) cals10k.2 (Constable et al., 2016) shadif14k (Pavon-Carrasco et al. (2014) NB : the first four of these models, are constrained to agree with gufm1 (Jackson et al., 2000) for the past four centuries Return ----------- x : north component of the magnetic field in nT y : east component of the magnetic field in nT z : downward component of the magnetic field in nT f : total magnetic field in nT By default, igrf12 coefficients are used between 1900 and 2020 from http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html. To check the results you can run the interactive program at the NGDC www.ngdc.noaa.gov/geomag-web """ from . import coefficients as cf gh, sv = [], [] colat = 90. - lat #! convert to colatitude for MB routine if lon < 0: lon = lon + 360. # ensure all positive east longitudes itype = 1 models, igrf12coeffs = cf.get_igrf12() if 'mod' in list(kwargs.keys()): if kwargs['mod'] == 'arch3k': psvmodels, psvcoeffs = cf.get_arch3k() # use ARCH3k coefficients elif kwargs['mod'] == 'cals3k': # use CALS3K_4b coefficients between -1000,1940 psvmodels, psvcoeffs = cf.get_cals3k() elif kwargs['mod'] == 'pfm9k': # use PFM9k (Nilsson et al., 2014), coefficients from -7000 to 1900 psvmodels, psvcoeffs = cf.get_pfm9k() elif kwargs['mod'] == 'hfm10k': # use HFM.OL1.A1 (Constable et al., 2016), coefficients from -8000 # to 1900 psvmodels, psvcoeffs = cf.get_hfm10k() elif kwargs['mod'] == 'cals10k.2': # use CALS10k.2 (Constable et al., 2016), coefficients from -8000 # to 1900 psvmodels, psvcoeffs = cf.get_cals10k_2() elif kwargs['mod'] == 'shadif14k': # use CALS10k.2 (Constable et al., 2016), coefficients from -8000 # to 1900 psvmodels, psvcoeffs = cf.get_shadif14k() else: # Korte and Constable, 2011; use prior to -1000, back to -8000 psvmodels, psvcoeffs = cf.get_cals10k() # use geodetic coordinates if 'models' in kwargs: if 'mod' in list(kwargs.keys()): return psvmodels, psvcoeffs else: return models, igrf12coeffs if date < -12000: print('too old') return if 'mod' in list(kwargs.keys()) and kwargs['mod'] == 'shadif14k': if date < -10000: incr = 100 else: incr = 50 model = date - date % incr gh = psvcoeffs[psvmodels.index(int(model))] sv = old_div( (psvcoeffs[psvmodels.index(int(model + incr))] - gh), float(incr)) x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon) elif date < -1000: incr = 10 model = date - date % incr gh = psvcoeffs[psvmodels.index(int(model))] sv = old_div( (psvcoeffs[psvmodels.index(int(model + incr))] - gh), float(incr)) x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon) elif date < 1900: if kwargs['mod'] == 'cals10k': incr = 50 else: incr = 10 model = date - date % incr gh = psvcoeffs[psvmodels.index(model)] if model + incr < 1900: sv = old_div( (psvcoeffs[psvmodels.index(model + incr)] - gh), float(incr)) else: field2 = igrf12coeffs[models.index(1940)][0:120] sv = old_div((field2 - gh), float(1940 - model)) x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon) else: model = date - date % 5 if date < 2015: gh = igrf12coeffs[models.index(model)] sv = old_div((igrf12coeffs[models.index(model + 5)] - gh), 5.) x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon) else: gh = igrf12coeffs[models.index(2015)] sv = igrf12coeffs[models.index(2015.20)] x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon) if 'coeffs' in list(kwargs.keys()): return gh else: return x, y, z, f
Calculates the interpolated (<2015) or extrapolated (>2015) main field and secular variation coefficients and passes them to the Malin and Barraclough routine (function pmag.magsyn) to calculate the field from the coefficients. Parameters: ----------- lon : east longitude in degrees (0 to 360 or -180 to 180) lat : latitude in degrees (-90 to 90) alt : height above mean sea level in km (itype = 1 assumed) date : Required date in years and decimals of a year (A.D.) Optional Parameters: ----------- coeffs : if True, then return the gh coefficients mod : model to use ('arch3k','cals3k','pfm9k','hfm10k','cals10k.2','cals10k.1b','shadif14k') arch3k (Korte et al., 2009) cals3k (Korte and Constable, 2011) cals10k.1b (Korte et al., 2011) pfm9k (Nilsson et al., 2014) hfm.OL1.A1 (Constable et al., 2016) cals10k.2 (Constable et al., 2016) shadif14k (Pavon-Carrasco et al. (2014) NB : the first four of these models, are constrained to agree with gufm1 (Jackson et al., 2000) for the past four centuries Return ----------- x : north component of the magnetic field in nT y : east component of the magnetic field in nT z : downward component of the magnetic field in nT f : total magnetic field in nT By default, igrf12 coefficients are used between 1900 and 2020 from http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html. To check the results you can run the interactive program at the NGDC www.ngdc.noaa.gov/geomag-web
Below is the the instruction that describes the task: ### Input: Calculates the interpolated (<2015) or extrapolated (>2015) main field and secular variation coefficients and passes them to the Malin and Barraclough routine (function pmag.magsyn) to calculate the field from the coefficients. Parameters: ----------- lon : east longitude in degrees (0 to 360 or -180 to 180) lat : latitude in degrees (-90 to 90) alt : height above mean sea level in km (itype = 1 assumed) date : Required date in years and decimals of a year (A.D.) Optional Parameters: ----------- coeffs : if True, then return the gh coefficients mod : model to use ('arch3k','cals3k','pfm9k','hfm10k','cals10k.2','cals10k.1b','shadif14k') arch3k (Korte et al., 2009) cals3k (Korte and Constable, 2011) cals10k.1b (Korte et al., 2011) pfm9k (Nilsson et al., 2014) hfm.OL1.A1 (Constable et al., 2016) cals10k.2 (Constable et al., 2016) shadif14k (Pavon-Carrasco et al. (2014) NB : the first four of these models, are constrained to agree with gufm1 (Jackson et al., 2000) for the past four centuries Return ----------- x : north component of the magnetic field in nT y : east component of the magnetic field in nT z : downward component of the magnetic field in nT f : total magnetic field in nT By default, igrf12 coefficients are used between 1900 and 2020 from http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html. To check the results you can run the interactive program at the NGDC www.ngdc.noaa.gov/geomag-web ### Response: def doigrf(lon, lat, alt, date, **kwargs): """ Calculates the interpolated (<2015) or extrapolated (>2015) main field and secular variation coefficients and passes them to the Malin and Barraclough routine (function pmag.magsyn) to calculate the field from the coefficients. Parameters: ----------- lon : east longitude in degrees (0 to 360 or -180 to 180) lat : latitude in degrees (-90 to 90) alt : height above mean sea level in km (itype = 1 assumed) date : Required date in years and decimals of a year (A.D.) Optional Parameters: ----------- coeffs : if True, then return the gh coefficients mod : model to use ('arch3k','cals3k','pfm9k','hfm10k','cals10k.2','cals10k.1b','shadif14k') arch3k (Korte et al., 2009) cals3k (Korte and Constable, 2011) cals10k.1b (Korte et al., 2011) pfm9k (Nilsson et al., 2014) hfm.OL1.A1 (Constable et al., 2016) cals10k.2 (Constable et al., 2016) shadif14k (Pavon-Carrasco et al. (2014) NB : the first four of these models, are constrained to agree with gufm1 (Jackson et al., 2000) for the past four centuries Return ----------- x : north component of the magnetic field in nT y : east component of the magnetic field in nT z : downward component of the magnetic field in nT f : total magnetic field in nT By default, igrf12 coefficients are used between 1900 and 2020 from http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html. To check the results you can run the interactive program at the NGDC www.ngdc.noaa.gov/geomag-web """ from . import coefficients as cf gh, sv = [], [] colat = 90. - lat #! convert to colatitude for MB routine if lon < 0: lon = lon + 360. # ensure all positive east longitudes itype = 1 models, igrf12coeffs = cf.get_igrf12() if 'mod' in list(kwargs.keys()): if kwargs['mod'] == 'arch3k': psvmodels, psvcoeffs = cf.get_arch3k() # use ARCH3k coefficients elif kwargs['mod'] == 'cals3k': # use CALS3K_4b coefficients between -1000,1940 psvmodels, psvcoeffs = cf.get_cals3k() elif kwargs['mod'] == 'pfm9k': # use PFM9k (Nilsson et al., 2014), coefficients from -7000 to 1900 psvmodels, psvcoeffs = cf.get_pfm9k() elif kwargs['mod'] == 'hfm10k': # use HFM.OL1.A1 (Constable et al., 2016), coefficients from -8000 # to 1900 psvmodels, psvcoeffs = cf.get_hfm10k() elif kwargs['mod'] == 'cals10k.2': # use CALS10k.2 (Constable et al., 2016), coefficients from -8000 # to 1900 psvmodels, psvcoeffs = cf.get_cals10k_2() elif kwargs['mod'] == 'shadif14k': # use CALS10k.2 (Constable et al., 2016), coefficients from -8000 # to 1900 psvmodels, psvcoeffs = cf.get_shadif14k() else: # Korte and Constable, 2011; use prior to -1000, back to -8000 psvmodels, psvcoeffs = cf.get_cals10k() # use geodetic coordinates if 'models' in kwargs: if 'mod' in list(kwargs.keys()): return psvmodels, psvcoeffs else: return models, igrf12coeffs if date < -12000: print('too old') return if 'mod' in list(kwargs.keys()) and kwargs['mod'] == 'shadif14k': if date < -10000: incr = 100 else: incr = 50 model = date - date % incr gh = psvcoeffs[psvmodels.index(int(model))] sv = old_div( (psvcoeffs[psvmodels.index(int(model + incr))] - gh), float(incr)) x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon) elif date < -1000: incr = 10 model = date - date % incr gh = psvcoeffs[psvmodels.index(int(model))] sv = old_div( (psvcoeffs[psvmodels.index(int(model + incr))] - gh), float(incr)) x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon) elif date < 1900: if kwargs['mod'] == 'cals10k': incr = 50 else: incr = 10 model = date - date % incr gh = psvcoeffs[psvmodels.index(model)] if model + incr < 1900: sv = old_div( (psvcoeffs[psvmodels.index(model + incr)] - gh), float(incr)) else: field2 = igrf12coeffs[models.index(1940)][0:120] sv = old_div((field2 - gh), float(1940 - model)) x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon) else: model = date - date % 5 if date < 2015: gh = igrf12coeffs[models.index(model)] sv = old_div((igrf12coeffs[models.index(model + 5)] - gh), 5.) x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon) else: gh = igrf12coeffs[models.index(2015)] sv = igrf12coeffs[models.index(2015.20)] x, y, z, f = magsyn(gh, sv, model, date, itype, alt, colat, lon) if 'coeffs' in list(kwargs.keys()): return gh else: return x, y, z, f