|
{ |
|
"results": { |
|
"logiqa": { |
|
"acc": 0.55, |
|
"acc_stderr": 0.11413288653790232, |
|
"acc_norm": 0.45, |
|
"acc_norm_stderr": 0.11413288653790232, |
|
"alias": "logiqa" |
|
}, |
|
"anli_r1": { |
|
"acc": 0.4, |
|
"acc_stderr": 0.11239029738980327, |
|
"alias": "anli_r1" |
|
} |
|
}, |
|
"group_subtasks": { |
|
"anli_r1": [], |
|
"logiqa": [] |
|
}, |
|
"configs": { |
|
"anli_r1": { |
|
"task": "anli_r1", |
|
"group": [ |
|
"anli" |
|
], |
|
"dataset_path": "anli", |
|
"training_split": "train_r1", |
|
"validation_split": "dev_r1", |
|
"test_split": "test_r1", |
|
"doc_to_text": "{{premise}}\nQuestion: {{hypothesis}} True, False, or Neither?\nAnswer:", |
|
"doc_to_target": "{{['True', 'Neither', 'False'][label]}}", |
|
"doc_to_choice": [ |
|
"True", |
|
"Neither", |
|
"False" |
|
], |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": true, |
|
"doc_to_decontamination_query": "premise", |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"logiqa": { |
|
"task": "logiqa", |
|
"dataset_path": "EleutherAI/logiqa", |
|
"dataset_name": "logiqa", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"training_split": "train", |
|
"validation_split": "validation", |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Passage: <passage>\n Question: <question>\n Choices:\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n Answer:\n \"\"\"\n choices = [\"a\", \"b\", \"c\", \"d\"]\n prompt = \"Passage: \" + doc[\"context\"] + \"\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\nChoices:\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "def doc_to_target(doc) -> int:\n choices = [\"a\", \"b\", \"c\", \"d\"]\n return choices.index(doc[\"label\"].strip())\n", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
}, |
|
{ |
|
"metric": "acc_norm", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": true, |
|
"doc_to_decontamination_query": "{{context}}", |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
} |
|
}, |
|
"versions": { |
|
"anli_r1": 1.0, |
|
"logiqa": 1.0 |
|
}, |
|
"n-shot": { |
|
"anli_r1": 0, |
|
"logiqa": 0 |
|
}, |
|
"higher_is_better": { |
|
"anli_r1": { |
|
"acc": true |
|
}, |
|
"logiqa": { |
|
"acc": true, |
|
"acc_norm": true |
|
} |
|
}, |
|
"n-samples": { |
|
"logiqa": { |
|
"original": 651, |
|
"effective": 20 |
|
}, |
|
"anli_r1": { |
|
"original": 1000, |
|
"effective": 20 |
|
} |
|
}, |
|
"config": { |
|
"model": "hf", |
|
"model_args": "pretrained=microsoft/Phi-3.5-mini-instruct,revision=main,dtype=bfloat16", |
|
"model_num_parameters": 3821079552, |
|
"model_dtype": "bfloat16", |
|
"model_revision": "main", |
|
"model_sha": "main", |
|
"batch_size": 64, |
|
"batch_sizes": [ |
|
64 |
|
], |
|
"device": "cpu", |
|
"use_cache": null, |
|
"limit": 20, |
|
"bootstrap_iters": 100000, |
|
"gen_kwargs": null, |
|
"random_seed": 0, |
|
"numpy_seed": 1234, |
|
"torch_seed": 1234, |
|
"fewshot_seed": 1234, |
|
"model_name": "microsoft/Phi-3.5-mini-instruct" |
|
}, |
|
"git_hash": "08eb026", |
|
"date": 1726788426.6822708, |
|
"pretty_env_info": "CUDA must not be initialized in the main process on Spaces with Stateless GPU environment.\nYou can look at this Stacktrace to find out which part of your code triggered a CUDA init", |
|
"transformers_version": "4.44.2", |
|
"upper_git_hash": null, |
|
"eot_token_id": 32000, |
|
"max_length": 131072 |
|
} |