""" Runs several baseline compression algorithms and stores results for each FITS file in a csv. This code is written functionality-only and cleaning it up is a TODO. Only runs on LCO data. """ import os import re from pathlib import Path import argparse import os.path from astropy.io import fits import numpy as np from time import time import pandas as pd from tqdm import tqdm import glob from astropy.io.fits import CompImageHDU from imagecodecs import ( jpeg2k_encode, jpeg2k_decode, jpegls_encode, jpegls_decode, jpegxl_encode, jpegxl_decode, rcomp_encode, rcomp_decode, ) # Functions that require some preset parameters. All others default to lossless. jpegxl_encode_max_effort_preset = lambda x: jpegxl_encode(x, lossless=True, effort=9) jpegxl_encode_preset = lambda x: jpegxl_encode(x, lossless=True) def find_matching_files(root_dir='./data/LCO'): # Use glob to recursively find all .fits files pattern = os.path.join(root_dir, '**', '*.fits') fits_files = glob.glob(pattern, recursive=True) return fits_files def benchmark_imagecodecs_compression_algos(arr, compression_type): encoder, decoder = ALL_CODECS[compression_type] write_start_time = time() encoded = encoder(arr) write_time = time() - write_start_time read_start_time = time() if compression_type == "RICE": decoded = decoder(encoded, shape=arr.shape, dtype=np.uint16) else: decoded = decoder(encoded) read_time = time() - read_start_time assert np.array_equal(arr, decoded) buflength = len(encoded) return {compression_type + "_BPD": buflength / arr.size, compression_type + "_WRITE_RUNTIME": write_time, compression_type + "_READ_RUNTIME": read_time, #compression_type + "_TILE_DIVISOR": np.nan, } def main(dim): save_path = f"baseline_results_{dim}.csv" file_paths = find_matching_files() df = pd.DataFrame(columns=columns, index=[str(p) for p in file_paths]) print(f"Number of files to be tested: {len(file_paths)}") ct = 0 for path in tqdm(file_paths): for hdu_idx in [0]: with fits.open(path) as hdul: if dim == '2d': arr = hdul[hdu_idx].data[0] else: raise RuntimeError(f"{dim} not applicable.") ct += 1 if ct % 1 == 0: print(df.mean()) df.to_csv(save_path) for algo in ALL_CODECS.keys(): try: if algo == "JPEG_2K" and dim != '2d': test_results = benchmark_imagecodecs_compression_algos(arr.transpose(1, 2, 0), algo) else: test_results = benchmark_imagecodecs_compression_algos(arr, algo) for column, value in test_results.items(): if column in df.columns: df.at[path + f"_hdu{hdu_idx}", column] = value except Exception as e: print(f"Failed at {path} under exception {e}.") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Process some 2D or 3D data.") parser.add_argument( "dimension", choices=['2d'], help="Specify whether the data is 2d, or; not applicable here: 3dt (3d time dimension), or 3dw (3d wavelength dimension)." ) args = parser.parse_args() dim = args.dimension.lower() # RICE REQUIRES UNIQUE INPUT OF ARR SHAPE AND DTYPE INTO DECODER ALL_CODECS = { "JPEG_XL_MAX_EFFORT": [jpegxl_encode_max_effort_preset, jpegxl_decode], "JPEG_XL": [jpegxl_encode_preset, jpegxl_decode], "JPEG_2K": [jpeg2k_encode, jpeg2k_decode], "JPEG_LS": [jpegls_encode, jpegls_decode], "RICE": [rcomp_encode, rcomp_decode], } columns = [] for algo in ALL_CODECS.keys(): columns.append(algo + "_BPD") columns.append(algo + "_WRITE_RUNTIME") columns.append(algo + "_READ_RUNTIME") #columns.append(algo + "_TILE_DIVISOR") main(dim)