import os import random from glob import glob import json from huggingface_hub import hf_hub_download from astropy.io import fits import datasets from datasets import DownloadManager from fsspec.core import url_to_fs _DESCRIPTION = ( "GBI-16-2D-Legacy is a Huggingface `dataset` wrapper around a compression " "dataset assembled by Maireles-González et al. (Publications of the " "Astronomical Society of the Pacific, 135:094502, 2023 September; doi: " "[https://doi.org/10.1088/1538-3873/acf6e0](https://doi.org/10.1088/1538-3873/" "acf6e0)). It contains 226 FITS images from 5 different ground-based " "telescope/cameras with a varying amount of entropy per image." ) _HOMEPAGE = "https://google.github.io/AstroCompress" _LICENSE = "CC BY 4.0" _URL = "https://huggingface.co/datasets/AstroCompress/GBI-16-2D-Legacy/resolve/main/" _URLS = { "tiny": { "train": "./splits/tiny_train.jsonl", "test": "./splits/tiny_test.jsonl", }, "full": { "train": "./splits/full_train.jsonl", "test": "./splits/full_test.jsonl", } } _REPO_ID = "AstroCompress/GBI-16-2D-Legacy" class GBI_16_2D_Legacy(datasets.GeneratorBasedBuilder): """GBI-16-2D-Legacy Dataset""" VERSION = datasets.Version("1.0.1") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="tiny", version=VERSION, description="A small subset of the data, to test downsteam workflows.", ), datasets.BuilderConfig( name="full", version=VERSION, description="The full dataset", ), ] DEFAULT_CONFIG_NAME = "tiny" def __init__(self, **kwargs): super().__init__(version=self.VERSION, **kwargs) def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { # Images are variable size across the dataset # so use the Image type here, returning as # numpy uint16 "image": datasets.Image(decode=True, mode="I;16"), "telescope": datasets.Value("string"), "image_id": datasets.Value("string"), } ), supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation="TBD", ) def _split_generators(self, dl_manager: DownloadManager): ret = [] base_path = dl_manager._base_path locally_run = not base_path.startswith(datasets.config.HF_ENDPOINT) _, path = url_to_fs(base_path) for split in ["train", "test"]: if locally_run: split_file_location = os.path.normpath(os.path.join(path, _URLS[self.config.name][split])) split_file = dl_manager.download_and_extract(split_file_location) else: split_file = hf_hub_download(repo_id=_REPO_ID, filename=_URLS[self.config.name][split], repo_type="dataset") with open(split_file, encoding="utf-8") as f: data_filenames = [] data_metadata = [] for line in f: item = json.loads(line) data_filenames.append(item["image"]) data_metadata.append({"telescope": item["telescope"], "image_id": item["image_id"]}) if locally_run: data_urls = [os.path.normpath(os.path.join(path,data_filename)) for data_filename in data_filenames] data_files = [dl_manager.download(data_url) for data_url in data_urls] else: data_urls = data_filenames data_files = [hf_hub_download(repo_id=_REPO_ID, filename=data_url, repo_type="dataset") for data_url in data_urls] ret.append( datasets.SplitGenerator( name=datasets.Split.TRAIN if split == "train" else datasets.Split.TEST, gen_kwargs={"filepaths": data_files, "split_file": split_file, "split": split, "data_metadata": data_metadata}, ), ) return ret def _generate_examples(self, filepaths, split_file, split, data_metadata): """Generate GBI-16-2D-Legacy examples""" for idx, (filepath, item) in enumerate(zip(filepaths, data_metadata)): task_instance_key = f"{self.config.name}-{split}-{idx}" with fits.open(filepath, memmap=False) as hdul: # this data is natively formatted like (1, 4200, 2154) # just use the 2D image image_data = hdul[0].data[0,:,:].tolist() yield task_instance_key, {**{"image": image_data}, **item}