File size: 7,062 Bytes
0ce5189 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
"""
Runs several baseline compression algorithms and stores results for each FITS file in a csv.
This code is written functionality-only and cleaning it up is a TODO.
"""
import os
import re
from pathlib import Path
import argparse
import os.path
from astropy.io import fits
import numpy as np
from time import time
import pandas as pd
from tqdm import tqdm
from astropy.io.fits import CompImageHDU
from imagecodecs import (
jpeg2k_encode,
jpeg2k_decode,
jpegls_encode,
jpegls_decode,
jpegxl_encode,
jpegxl_decode,
rcomp_encode,
rcomp_decode,
)
# Functions that require some preset parameters. All others default to lossless.
jpegxl_encode_max_effort_preset = lambda x: jpegxl_encode(x, lossless=True, effort=9)
jpegxl_encode_preset = lambda x: jpegxl_encode(x, lossless=True)
def split_uint16_to_uint8(arr):
# Ensure the input is of the correct type
assert arr.dtype == np.uint16, "Input array must be of type np.uint16"
# Compute the top 8 bits and the bottom 8 bits
top_bits = (arr >> 8).astype(np.uint8)
bottom_bits = (arr & 0xFF).astype(np.uint8)
return top_bits, bottom_bits
def find_matching_files():
"""
Returns list of test set file paths.
"""
df = pd.read_json("./splits/full_test.jsonl", lines=True)
return list(df['image'])
def benchmark_imagecodecs_compression_algos(arr, compression_type):
encoder, decoder = ALL_CODECS[compression_type]
write_start_time = time()
encoded = encoder(arr)
write_time = time() - write_start_time
read_start_time = time()
if compression_type == "RICE":
decoded = decoder(encoded, shape=arr.shape, dtype=np.uint16)
else:
decoded = decoder(encoded)
read_time = time() - read_start_time
assert np.array_equal(arr, decoded)
buflength = len(encoded)
return {compression_type + "_BPD": buflength / arr.size,
compression_type + "_WRITE_RUNTIME": write_time,
compression_type + "_READ_RUNTIME": read_time,
#compression_type + "_TILE_DIVISOR": np.nan,
}
def main(dim):
save_path = f"baseline_results_{dim}.csv"
file_paths = find_matching_files()
df = pd.DataFrame(columns=columns, index=[str(p) for p in file_paths])
print(f"Number of files to be tested: {len(file_paths)}")
ct = 0
for path in tqdm(file_paths):
with fits.open(path) as hdul:
if dim == '2d': # compress the first timestep frame, R wavelength band (index 2)
arr = hdul[0].data[0][2]
arrs = [arr]
elif dim == '2d-top': # same as 2d, but only top 8 bits. This is to compare with similarly preprocessed neural approaches.
arr = hdul[0].data[0][2]
arr = split_uint16_to_uint8(arr)[0]
arrs = [arr]
elif dim == '2d-bottom': # same as 2d, but only bottom 8 bits. This is to compare with similarly preprocessed neural approaches.
arr = hdul[0].data[0][2]
arr = split_uint16_to_uint8(arr)[1]
arrs = [arr]
elif dim == '3dt' and len(hdul[0].data) > 2: # 3D tensor with first 3 timestep frames of wavelength band index 2
arr = hdul[0].data[0:3][2]
arrs = [arr]
elif dim == '3dw' and len(hdul[0].data[0]) > 2: # 3D tensor with first timestep frame on wavelength bands of indices 1,2,3 (G, R, I bands)
arr = hdul[0].data[0][0:3]
arrs = [arr]
elif dim == '3dt_reshape' and len(hdul[0].data) > 2: # Same as 3dt but reshape into 2D array, for compatibility with JPEG-LS and RICE
arr = hdul[0].data[0:3][2].reshape((800, -1))
arrs = [arr]
elif dim == '3dw_reshape' and len(hdul[0].data[0]) > 2: # Same as 3dw but reshape into 2D array, for compatibility with JPEG-LS and RICE
arr = hdul[0].data[0][0:3].reshape((800, -1))
arrs = [arr]
elif dim == 'tw': # Iterate through all possible arrays where the x,y spatial location is fixed, and the remaining 2D array consists of ALL timesteps, ALL wavelengths.
init_arr = hdul[0].data
def arrs_gen():
for i in range(init_arr.shape[-2]):
for j in range(init_arr.shape[-1]):
yield init_arr[:, :, i, j]
arrs = arrs_gen()
else:
continue
ct += 1
if ct % 10 == 0:
print(df.mean())
df.to_csv(save_path)
for arr_idx, arr in enumerate(arrs):
for algo in ALL_CODECS.keys():
try:
if algo == "JPEG_2K" and (dim == '3dt' or dim == '3dw'):
test_results = benchmark_imagecodecs_compression_algos(arr.transpose(1, 2, 0), algo)
else:
test_results = benchmark_imagecodecs_compression_algos(arr, algo)
for column, value in test_results.items():
if column in df.columns:
df.at[path + f"_arr_{arr_idx}", column] = value
except Exception as e:
print(f"Failed at {path} under exception {e}.")
print(df.mean())
df.to_csv(save_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Process some 2D or 3D data.")
parser.add_argument(
"dimension",
choices=['2d', '2d-top', '2d-bottom', '3dt', '3dw', 'tw', '3dt_reshape', '3dw_reshape'],
help="Specify whether the data is 2d, 3dt (3d time dimension), 3dw (3d wavelength dimension), 2d-top (only top 8 bits), 2d-bottom (only bottom 8 bits), tw (only a single x,y spatial location but all timesteps and wavelengths), 3dt_reshape or 3dw_reshape for the 2D flattened 3D evals, for use on JPEG-LS or RICE."
)
args = parser.parse_args()
dim = args.dimension.lower()
# RICE REQUIRES UNIQUE INPUT OF ARR SHAPE AND DTYPE INTO DECODER
if dim == '3dw' or dim == '3dt' or dim == 'tw':
ALL_CODECS = {
"JPEG_XL_MAX_EFFORT": [jpegxl_encode_max_effort_preset, jpegxl_decode],
"JPEG_XL": [jpegxl_encode_preset, jpegxl_decode],
"JPEG_2K": [jpeg2k_encode, jpeg2k_decode],
}
else:
ALL_CODECS = {
"JPEG_XL_MAX_EFFORT": [jpegxl_encode_max_effort_preset, jpegxl_decode],
"JPEG_XL": [jpegxl_encode_preset, jpegxl_decode],
"JPEG_2K": [jpeg2k_encode, jpeg2k_decode],
"JPEG_LS": [jpegls_encode, jpegls_decode],
"RICE": [rcomp_encode, rcomp_decode],
}
columns = []
for algo in ALL_CODECS.keys():
columns.append(algo + "_BPD")
columns.append(algo + "_WRITE_RUNTIME")
columns.append(algo + "_READ_RUNTIME")
#columns.append(algo + "_TILE_DIVISOR")
main(dim) |