|
import os |
|
import random |
|
from glob import glob |
|
import json |
|
from huggingface_hub import hf_hub_download |
|
from tqdm import tqdm |
|
import numpy as np |
|
|
|
from astropy.io import fits |
|
from astropy.wcs import WCS |
|
import datasets |
|
from datasets import DownloadManager |
|
from fsspec.core import url_to_fs |
|
|
|
_DESCRIPTION = ( |
|
"""SBI-16-3D is a dataset which is part of the AstroCompress project. """ |
|
"""It contains data assembled from the James Webb Space Telescope (JWST). """ |
|
"""<TODO>Describe data format</TODO>""" |
|
) |
|
|
|
_HOMEPAGE = "https://google.github.io/AstroCompress" |
|
|
|
_LICENSE = "CC BY 4.0" |
|
|
|
_URL = "https://huggingface.co/datasets/AstroCompress/SBI-16-3D/resolve/main/" |
|
|
|
_URLS = { |
|
"tiny": { |
|
"train": "./splits/tiny_train.jsonl", |
|
"test": "./splits/tiny_test.jsonl", |
|
}, |
|
"full": { |
|
"train": "./splits/full_train.jsonl", |
|
"test": "./splits/full_test.jsonl", |
|
}, |
|
} |
|
|
|
_REPO_ID = "AstroCompress/SBI-16-3D" |
|
|
|
|
|
class SBI_16_3D(datasets.GeneratorBasedBuilder): |
|
"""SBI-16-3D Dataset""" |
|
|
|
VERSION = datasets.Version("1.0.3") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="tiny", |
|
version=VERSION, |
|
description="A small subset of the data, to test downsteam workflows.", |
|
), |
|
datasets.BuilderConfig( |
|
name="full", |
|
version=VERSION, |
|
description="The full dataset", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "tiny" |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(version=self.VERSION, **kwargs) |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Array3D(shape=(None, 2048, 2048), dtype="uint16"), |
|
"ra": datasets.Value("float64"), |
|
"dec": datasets.Value("float64"), |
|
"pixscale": datasets.Value("float64"), |
|
"ntimes": datasets.Value("int64"), |
|
"image_id": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation="TBD", |
|
) |
|
|
|
def _split_generators(self, dl_manager: DownloadManager): |
|
|
|
ret = [] |
|
base_path = dl_manager._base_path |
|
locally_run = not base_path.startswith(datasets.config.HF_ENDPOINT) |
|
_, path = url_to_fs(base_path) |
|
|
|
for split in ["train", "test"]: |
|
if locally_run: |
|
split_file_location = os.path.normpath( |
|
os.path.join(path, _URLS[self.config.name][split]) |
|
) |
|
split_file = dl_manager.download_and_extract(split_file_location) |
|
else: |
|
split_file = hf_hub_download( |
|
repo_id=_REPO_ID, |
|
filename=_URLS[self.config.name][split], |
|
repo_type="dataset", |
|
) |
|
with open(split_file, encoding="utf-8") as f: |
|
data_filenames = [] |
|
data_metadata = [] |
|
for line in f: |
|
item = json.loads(line) |
|
data_filenames.append(item["image"]) |
|
data_metadata.append( |
|
{ |
|
"ra": item["ra"], |
|
"dec": item["dec"], |
|
"pixscale": item["pixscale"], |
|
"ntimes": item["ntimes"], |
|
"image_id": item["image_id"], |
|
} |
|
) |
|
if locally_run: |
|
data_urls = [ |
|
os.path.normpath(os.path.join(path, data_filename)) |
|
for data_filename in data_filenames |
|
] |
|
data_files = [ |
|
dl_manager.download(data_url) for data_url in data_urls |
|
] |
|
else: |
|
data_urls = data_filenames |
|
data_files = [ |
|
hf_hub_download( |
|
repo_id=_REPO_ID, filename=data_url, repo_type="dataset" |
|
) |
|
for data_url in data_urls |
|
] |
|
ret.append( |
|
datasets.SplitGenerator( |
|
name=( |
|
datasets.Split.TRAIN |
|
if split == "train" |
|
else datasets.Split.TEST |
|
), |
|
gen_kwargs={ |
|
"filepaths": data_files, |
|
"split_file": split_file, |
|
"split": split, |
|
"data_metadata": data_metadata, |
|
}, |
|
), |
|
) |
|
return ret |
|
|
|
def _generate_examples(self, filepaths, split_file, split, data_metadata): |
|
"""Generate GBI-16-4D examples""" |
|
|
|
for idx, (filepath, item) in enumerate(zip(filepaths, data_metadata)): |
|
task_instance_key = f"{self.config.name}-{split}-{idx}" |
|
with fits.open(filepath, memmap=False) as hdul: |
|
|
|
|
|
image_data = hdul["SCI"].data[0, :, :, :] |
|
yield task_instance_key, {**{"image": image_data}, **item} |
|
|
|
|
|
def get_fits_footprint(fits_path): |
|
""" |
|
Process a FITS file to extract WCS information and calculate the footprint. |
|
|
|
Parameters: |
|
fits_path (str): Path to the FITS file. |
|
|
|
Returns: |
|
tuple: A tuple containing the WCS footprint coordinates. |
|
""" |
|
with fits.open(fits_path) as hdul: |
|
hdul[1].data = hdul[1].data[0, 0] |
|
wcs = WCS(hdul[1].header) |
|
shape = sorted(tuple(wcs.pixel_shape))[:2] |
|
footprint = wcs.calc_footprint(axes=shape) |
|
coords = list(footprint.flatten()) |
|
return coords |
|
|
|
|
|
def calculate_pixel_scale(header): |
|
""" |
|
Calculate the pixel scale in arcseconds per pixel from a FITS header. |
|
|
|
Parameters: |
|
header (astropy.io.fits.header.Header): The FITS header containing WCS information. |
|
|
|
Returns: |
|
Mean of the pixel scales in x and y. |
|
""" |
|
|
|
|
|
pixscale_x = header.get("CDELT1", np.nan) |
|
pixscale_y = header.get("CDELT2", np.nan) |
|
|
|
return np.mean([pixscale_x, pixscale_y]) |
|
|
|
|
|
def make_split_jsonl_files( |
|
config_type="tiny", data_dir="./data", outdir="./splits", seed=42 |
|
): |
|
""" |
|
Create jsonl files for the SBI-16-3D dataset. |
|
|
|
config_type: str, default="tiny" |
|
The type of split to create. Options are "tiny" and "full". |
|
data_dir: str, default="./data" |
|
The directory where the FITS files are located. |
|
outdir: str, default="./splits" |
|
The directory where the jsonl files will be created. |
|
seed: int, default=42 |
|
The seed for the random split. |
|
""" |
|
random.seed(seed) |
|
os.makedirs(outdir, exist_ok=True) |
|
|
|
fits_files = glob(os.path.join(data_dir, "*.fits")) |
|
random.shuffle(fits_files) |
|
if config_type == "tiny": |
|
train_files = fits_files[:2] |
|
test_files = fits_files[2:3] |
|
elif config_type == "full": |
|
split_idx = int(0.8 * len(fits_files)) |
|
train_files = fits_files[:split_idx] |
|
test_files = fits_files[split_idx:] |
|
else: |
|
raise ValueError("Unsupported config_type. Use 'tiny' or 'full'.") |
|
|
|
def create_jsonl(files, split_name): |
|
output_file = os.path.join(outdir, f"{config_type}_{split_name}.jsonl") |
|
with open(output_file, "w") as out_f: |
|
for file in tqdm(files): |
|
|
|
with fits.open(file, memmap=False) as hdul: |
|
image_id = os.path.basename(file).split(".fits")[0] |
|
ra = hdul["SCI"].header.get("CRVAL1", 0) |
|
dec = hdul["SCI"].header.get("CRVAL2", 0) |
|
pixscale = calculate_pixel_scale(hdul["SCI"].header) |
|
footprint = get_fits_footprint(file) |
|
|
|
ntimes = hdul["SCI"].data.shape[1] |
|
item = { |
|
"image_id": image_id, |
|
"image": file, |
|
"ra": ra, |
|
"dec": dec, |
|
"pixscale": pixscale, |
|
"ntimes": ntimes, |
|
"footprint": footprint, |
|
} |
|
out_f.write(json.dumps(item) + "\n") |
|
|
|
create_jsonl(train_files, "train") |
|
create_jsonl(test_files, "test") |
|
|
|
|
|
if __name__ == "__main__": |
|
make_split_jsonl_files("tiny") |
|
make_split_jsonl_files("full") |
|
|