File size: 9,490 Bytes
065fee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
Decorator Benchmarks
====================

The **wrapt** module ensures that your decorators will work in all
situations. The implementation therefore does not take the shortcuts that
people usually take with decorators of using function closures. Instead it
implements the wrappers as a class, which also acts as a descriptor.
Ensuring correctness though does come at an additional cost in runtime
overhead. The following attempts to quantify what that overhead is and
compare it to other solutions typically used.

Results were collected under MacOS X Mountain Lion on a 2012 model MacBook
Pro, running with Python 2.7.

Undecorated Calls
-----------------

These tests provide a baseline for comparing decorated functions against a
normal undecorated function call.

**Test Code**::

    def function1():
        pass

    class Class(object):

        def function1(self):
            pass

        @classmethod
        def function1cm(cls):
            pass

        @staticmethod
        def function1sm():
            pass

**Test Results**::

    $ python -m timeit -s 'import benchmarks' 'benchmarks.function1()'
    10000000 loops, best of 3: 0.132 usec per loop

    $ python -m timeit -s 'import benchmarks; c=benchmarks.Class()' 'c.function1()'
    10000000 loops, best of 3: 0.143 usec per loop

    $ python -m timeit -s 'import benchmarks' 'benchmarks.Class.function1cm()'
    1000000 loops, best of 3: 0.217 usec per loop

    $ python -m timeit -s 'import benchmarks; c=benchmarks.Class()' 'c.function1cm()'
    10000000 loops, best of 3: 0.159 usec per loop

    $ python -m timeit -s 'import benchmarks' 'benchmarks.Class.function1sm()'
    1000000 loops, best of 3: 0.199 usec per loop

    $ python -m timeit -s 'import benchmarks; c=benchmarks.Class()' 'c.function1sm()'
    10000000 loops, best of 3: 0.13 usec per loop

Note that differences between calling the class and static methods via the
class vs the instance are possibly more to do with needing to traverse
the dotted path.

Function Closures
-----------------

These tests provide results for decorated functions where the decorators are
implemented using function closures.

**Test Code**::

    def wrapper2(func):
        def _wrapper2(*args, **kwargs):
            return func(*args, **kwargs)
        return _wrapper2

    @wrapper2
    def function2():
        pass

    class Class(object):

        @wrapper2
        def function2(self):
            pass

        @classmethod
        @wrapper2
        def function2cmi(cls):
            pass

        @staticmethod
        @wrapper2
        def function2smi():
            pass

**Test Results**::

    $ python -m timeit -s 'import benchmarks' 'benchmarks.function2()'
    1000000 loops, best of 3: 0.326 usec per loop

    $ python -m timeit -s 'import benchmarks; c=benchmarks.Class()' 'c.function2()'
    1000000 loops, best of 3: 0.382 usec per loop

    $ python -m timeit -s 'import benchmarks' 'benchmarks.Class.function2cmi()'
    1000000 loops, best of 3: 0.46 usec per loop

    $ python -m timeit -s 'import benchmarks; c=benchmarks.Class()' 'c.function2cmi()'
    1000000 loops, best of 3: 0.384 usec per loop

    $ python -m timeit -s 'import benchmarks' 'benchmarks.Class.function2smi()'
    1000000 loops, best of 3: 0.389 usec per loop

    $ python -m timeit -s 'import benchmarks; c=benchmarks.Class()' 'c.function2smi()'
    1000000 loops, best of 3: 0.319 usec per loop

Note that decorators implemented as function closures cannot be added around
staticmethod and classmethod decorators and must be added inside of those
decorators.

wrapt.decorator
---------------

These tests provides results for decorated functions where the decorators
are implemented using the **wrapt** module. Separate results are provided
for when using the C extension and when using the pure Python
implementation.

**Test Code**::

    @wrapt.decorator
    def wrapper3(wrapped, instance, args, kwargs):
        return wrapped(*args, **kwargs)

    @wrapper3
    def function3():
        pass

    class Class(object):

        @wrapper3
        def function3(self):
            pass

        @wrapper3
        @classmethod
        def function3cmo(cls):
            pass

        @classmethod
        @wrapper3
        def function3cmi(cls):
            pass

        @wrapper3
        @staticmethod
        def function3smo():
            pass

        @staticmethod
        @wrapper3
        def function3smi():
            pass

**Test Results (C Extension)**::

    $ python -m timeit -s 'import benchmarks' 'benchmarks.function3()'
    1000000 loops, best of 3: 0.382 usec per loop

    $ python -m timeit -s 'import benchmarks; c=benchmarks.Class()' 'c.function3()'
    1000000 loops, best of 3: 0.836 usec per loop

    $ python -m timeit -s 'import benchmarks' 'benchmarks.Class.function3cmo()'
    1000000 loops, best of 3: 1.11 usec per loop

    $ python -m timeit -s 'import benchmarks; c=benchmarks.Class()' 'c.function3cmo()'
    1000000 loops, best of 3: 1.06 usec per loop

    $ python -m timeit -s 'import benchmarks' 'benchmarks.Class.function3cmi()'
    1000000 loops, best of 3: 0.535 usec per loop

    $ python -m timeit -s 'import benchmarks; c=benchmarks.Class()' 'c.function3cmi()'
    1000000 loops, best of 3: 0.455 usec per loop

    $ python -m timeit -s 'import benchmarks' 'benchmarks.Class.function3smo()'
    1000000 loops, best of 3: 1.37 usec per loop

    $ python -m timeit -s 'import benchmarks; c=benchmarks.Class()' 'c.function3smo()'
    1000000 loops, best of 3: 1.31 usec per loop

    $ python -m timeit -s 'import benchmarks' 'benchmarks.Class.function3smi()'
    1000000 loops, best of 3: 0.453 usec per loop

    $ python -m timeit -s 'import benchmarks; c=benchmarks.Class()' 'c.function3smi()'
    1000000 loops, best of 3: 0.378 usec per loop

Note that results for where the decorator is inside that of the classmethod
decorator is quite a bit less than that where it is outside. This due to a
potential bug in Python whereby it doesn't apply the descriptor protocol to
what the classmethod decorator wraps. Instead it is executing a straight
function call, which has less overhead.

**Test Results (Pure Python)**::

    $ python -m timeit -s 'import benchmarks' 'benchmarks.function3()'
    1000000 loops, best of 3: 0.771 usec per loop

    $ python -m timeit -s 'import benchmarks; c=benchmarks.Class()' 'c.function3()'
    100000 loops, best of 3: 6.67 usec per loop

    $ python -m timeit -s 'import benchmarks' 'benchmarks.Class.function3cmo()'
    100000 loops, best of 3: 6.89 usec per loop

    $ python -m timeit -s 'import benchmarks; c=benchmarks.Class()' 'c.function3cmo()'
    100000 loops, best of 3: 6.77 usec per loop

    $ python -m timeit -s 'import benchmarks' 'benchmarks.Class.function3cmi()'
    1000000 loops, best of 3: 0.911 usec per loop

    $ python -m timeit -s 'import benchmarks; c=benchmarks.Class()' 'c.function3cmi()'
    1000000 loops, best of 3: 0.863 usec per loop

    $ python -m timeit -s 'import benchmarks' 'benchmarks.Class.function3smo()'
    100000 loops, best of 3: 7.26 usec per loop

    $ python -m timeit -s 'import benchmarks; c=benchmarks.Class()' 'c.function3smo()'
    100000 loops, best of 3: 7.17 usec per loop

    $ python -m timeit -s 'import benchmarks' 'benchmarks.Class.function3smi()'
    1000000 loops, best of 3: 0.835 usec per loop

    $ python -m timeit -s 'import benchmarks; c=benchmarks.Class()' 'c.function3smi()'
    1000000 loops, best of 3: 0.774 usec per loop

Note that results for where the decorator is inside that of the classmethod
decorator is quite a bit less than that where it is outside. This due to a
potential bug in Python whereby it doesn't apply the descriptor protocol to
what the classmethod decorator wraps. Instead it is executing a straight
function call, which has less overhead.

decorator.decorator
-------------------

These tests provides results for decorated functions where the decorators
are implemented using the **decorator** module available from PyPi.

**Test Code**::

    @decorator.decorator
    def wrapper4(wrapped, *args, **kwargs):
        return wrapped(*args, **kwargs)

    @wrapper4
    def function4():
        pass

    class Class(object):

        @wrapper4
        def function4(self):
            pass

        @classmethod
        @wrapper4
        def function4cmi(cls):
            pass

        @staticmethod
        @wrapper4
        def function4smi():
            pass

**Test Results**::

    $ python -m timeit -s 'import benchmarks' 'benchmarks.function4()'
    1000000 loops, best of 3: 0.465 usec per loop

    $ python -m timeit -s 'import benchmarks; c=benchmarks.Class()' 'c.function4()'
    1000000 loops, best of 3: 0.537 usec per loop

    $ python -m timeit -s 'import benchmarks' 'benchmarks.Class.function4cmi()'
    1000000 loops, best of 3: 0.606 usec per loop

    $ python -m timeit -s 'import benchmarks; c=benchmarks.Class()' 'c.function4cmi()'
    1000000 loops, best of 3: 0.533 usec per loop

    $ python -m timeit -s 'import benchmarks' 'benchmarks.Class.function4smi()'
    1000000 loops, best of 3: 0.532 usec per loop

    $ python -m timeit -s 'import benchmarks; c=benchmarks.Class()' 'c.function4smi()'
    1000000 loops, best of 3: 0.456 usec per loop

Note that decorators implemented using the decorator module cannot be added
around staticmethod and classmethod decorators and must be added inside of
those decorators.