File size: 20,236 Bytes
065fee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
# Copyright 2016 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Testable usage examples for Google BigQuery API wrapper
Each example function takes a ``client`` argument (which must be an instance
of :class:`google.cloud.bigquery.client.Client`) and uses it to perform a task
with the API.
To facilitate running the examples as system tests, each example is also passed
a ``to_delete`` list;  the function adds to the list any objects created which
need to be deleted during teardown.
"""

import os
import time

import pytest

try:
    import pandas
except (ImportError, AttributeError):
    pandas = None

try:
    import pyarrow
except (ImportError, AttributeError):
    pyarrow = None

from google.api_core.exceptions import InternalServerError
from google.api_core.exceptions import ServiceUnavailable
from google.api_core.exceptions import TooManyRequests
from google.cloud import bigquery
from google.cloud import storage
from test_utils.retry import RetryErrors

ORIGINAL_FRIENDLY_NAME = "Original friendly name"
ORIGINAL_DESCRIPTION = "Original description"
LOCALLY_CHANGED_FRIENDLY_NAME = "Locally-changed friendly name"
LOCALLY_CHANGED_DESCRIPTION = "Locally-changed description"
UPDATED_FRIENDLY_NAME = "Updated friendly name"
UPDATED_DESCRIPTION = "Updated description"

SCHEMA = [
    bigquery.SchemaField("full_name", "STRING", mode="REQUIRED"),
    bigquery.SchemaField("age", "INTEGER", mode="REQUIRED"),
]

ROWS = [
    ("Phred Phlyntstone", 32),
    ("Bharney Rhubble", 33),
    ("Wylma Phlyntstone", 29),
    ("Bhettye Rhubble", 27),
]

QUERY = (
    "SELECT name FROM `bigquery-public-data.usa_names.usa_1910_2013` "
    'WHERE state = "TX"'
)


retry_429 = RetryErrors(TooManyRequests)
retry_storage_errors = RetryErrors(
    (TooManyRequests, InternalServerError, ServiceUnavailable)
)


@pytest.fixture(scope="module")
def client():
    return bigquery.Client()


@pytest.fixture
def to_delete(client):
    doomed = []
    yield doomed
    for item in doomed:
        if isinstance(item, (bigquery.Dataset, bigquery.DatasetReference)):
            retry_429(client.delete_dataset)(item, delete_contents=True)
        elif isinstance(item, storage.Bucket):
            retry_storage_errors(item.delete)()
        else:
            retry_429(item.delete)()


def _millis():
    return int(time.time() * 1000)


class _CloseOnDelete(object):
    def __init__(self, wrapped):
        self._wrapped = wrapped

    def delete(self):
        self._wrapped.close()


def test_create_client_default_credentials():
    """Create a BigQuery client with Application Default Credentials"""

    # [START bigquery_client_default_credentials]
    from google.cloud import bigquery

    # If you don't specify credentials when constructing the client, the
    # client library will look for credentials in the environment.
    client = bigquery.Client()
    # [END bigquery_client_default_credentials]

    assert client is not None


@pytest.mark.skip(
    reason=(
        "update_table() is flaky "
        "https://github.com/GoogleCloudPlatform/google-cloud-python/issues/5589"
    )
)
def test_update_table_description(client, to_delete):
    """Update a table's description."""
    dataset_id = "update_table_description_dataset_{}".format(_millis())
    table_id = "update_table_description_table_{}".format(_millis())
    project = client.project
    dataset_ref = bigquery.DatasetReference(project, dataset_id)
    dataset = bigquery.Dataset(dataset_ref)
    client.create_dataset(dataset)
    to_delete.append(dataset)

    table = bigquery.Table(dataset.table(table_id), schema=SCHEMA)
    table.description = "Original description."
    table = client.create_table(table)

    # [START bigquery_update_table_description]
    # from google.cloud import bigquery
    # client = bigquery.Client()
    # project = client.project
    # dataset_ref = bigquery.DatasetReference(project, dataset_id)
    # table_ref = dataset_ref.table('my_table')
    # table = client.get_table(table_ref)  # API request

    assert table.description == "Original description."
    table.description = "Updated description."

    table = client.update_table(table, ["description"])  # API request

    assert table.description == "Updated description."
    # [END bigquery_update_table_description]


@pytest.mark.skip(
    reason=(
        "update_table() is flaky "
        "https://github.com/GoogleCloudPlatform/google-cloud-python/issues/5589"
    )
)
def test_update_table_cmek(client, to_delete):
    """Patch a table's metadata."""
    dataset_id = "update_table_cmek_{}".format(_millis())
    table_id = "update_table_cmek_{}".format(_millis())
    project = client.project
    dataset_ref = bigquery.DatasetReference(project, dataset_id)
    dataset = bigquery.Dataset(dataset_ref)
    client.create_dataset(dataset)
    to_delete.append(dataset)

    table = bigquery.Table(dataset.table(table_id))
    original_kms_key_name = "projects/{}/locations/{}/keyRings/{}/cryptoKeys/{}".format(
        "cloud-samples-tests", "us", "test", "test"
    )
    table.encryption_configuration = bigquery.EncryptionConfiguration(
        kms_key_name=original_kms_key_name
    )
    table = client.create_table(table)

    # [START bigquery_update_table_cmek]
    # from google.cloud import bigquery
    # client = bigquery.Client()

    assert table.encryption_configuration.kms_key_name == original_kms_key_name

    # Set a new encryption key to use for the destination.
    # TODO: Replace this key with a key you have created in KMS.
    updated_kms_key_name = (
        "projects/cloud-samples-tests/locations/us/keyRings/test/cryptoKeys/otherkey"
    )
    table.encryption_configuration = bigquery.EncryptionConfiguration(
        kms_key_name=updated_kms_key_name
    )

    table = client.update_table(table, ["encryption_configuration"])  # API request

    assert table.encryption_configuration.kms_key_name == updated_kms_key_name
    assert original_kms_key_name != updated_kms_key_name
    # [END bigquery_update_table_cmek]


def test_load_table_add_column(client, to_delete):
    dataset_id = "load_table_add_column_{}".format(_millis())
    project = client.project
    dataset_ref = bigquery.DatasetReference(project, dataset_id)
    dataset = bigquery.Dataset(dataset_ref)
    dataset.location = "US"
    dataset = client.create_dataset(dataset)
    to_delete.append(dataset)

    snippets_dir = os.path.abspath(os.path.dirname(__file__))
    filepath = os.path.join(snippets_dir, "..", "tests", "data", "people.csv")
    table_ref = dataset_ref.table("my_table")
    old_schema = [bigquery.SchemaField("full_name", "STRING", mode="REQUIRED")]
    table = client.create_table(bigquery.Table(table_ref, schema=old_schema))

    # [START bigquery_add_column_load_append]
    # from google.cloud import bigquery
    # client = bigquery.Client()
    # project = client.project
    # dataset_ref = bigquery.DatasetReference(project, 'my_dataset')
    # filepath = 'path/to/your_file.csv'

    # Retrieves the destination table and checks the length of the schema
    table_id = "my_table"
    table_ref = dataset_ref.table(table_id)
    table = client.get_table(table_ref)
    print("Table {} contains {} columns.".format(table_id, len(table.schema)))

    # Configures the load job to append the data to the destination table,
    # allowing field addition
    job_config = bigquery.LoadJobConfig()
    job_config.write_disposition = bigquery.WriteDisposition.WRITE_APPEND
    job_config.schema_update_options = [
        bigquery.SchemaUpdateOption.ALLOW_FIELD_ADDITION
    ]
    # In this example, the existing table contains only the 'full_name' column.
    # 'REQUIRED' fields cannot be added to an existing schema, so the
    # additional column must be 'NULLABLE'.
    job_config.schema = [
        bigquery.SchemaField("full_name", "STRING", mode="REQUIRED"),
        bigquery.SchemaField("age", "INTEGER", mode="NULLABLE"),
    ]
    job_config.source_format = bigquery.SourceFormat.CSV
    job_config.skip_leading_rows = 1

    with open(filepath, "rb") as source_file:
        job = client.load_table_from_file(
            source_file,
            table_ref,
            location="US",  # Must match the destination dataset location.
            job_config=job_config,
        )  # API request

    job.result()  # Waits for table load to complete.
    print(
        "Loaded {} rows into {}:{}.".format(
            job.output_rows, dataset_id, table_ref.table_id
        )
    )

    # Checks the updated length of the schema
    table = client.get_table(table)
    print("Table {} now contains {} columns.".format(table_id, len(table.schema)))
    # [END bigquery_add_column_load_append]
    assert len(table.schema) == 2
    assert table.num_rows > 0


def test_load_table_relax_column(client, to_delete):
    dataset_id = "load_table_relax_column_{}".format(_millis())
    project = client.project
    dataset_ref = bigquery.DatasetReference(project, dataset_id)
    dataset = bigquery.Dataset(dataset_ref)
    dataset.location = "US"
    dataset = client.create_dataset(dataset)
    to_delete.append(dataset)

    snippets_dir = os.path.abspath(os.path.dirname(__file__))
    filepath = os.path.join(snippets_dir, "..", "tests", "data", "people.csv")
    table_ref = dataset_ref.table("my_table")
    old_schema = [
        bigquery.SchemaField("full_name", "STRING", mode="REQUIRED"),
        bigquery.SchemaField("age", "INTEGER", mode="REQUIRED"),
        bigquery.SchemaField("favorite_color", "STRING", mode="REQUIRED"),
    ]
    table = client.create_table(bigquery.Table(table_ref, schema=old_schema))

    # [START bigquery_relax_column_load_append]
    # from google.cloud import bigquery
    # client = bigquery.Client()
    # project = client.project
    # dataset_ref = bigquery.DatasetReference(project, 'my_dataset')
    # filepath = 'path/to/your_file.csv'

    # Retrieves the destination table and checks the number of required fields
    table_id = "my_table"
    table_ref = dataset_ref.table(table_id)
    table = client.get_table(table_ref)
    original_required_fields = sum(field.mode == "REQUIRED" for field in table.schema)
    # In this example, the existing table has 3 required fields.
    print("{} fields in the schema are required.".format(original_required_fields))

    # Configures the load job to append the data to a destination table,
    # allowing field relaxation
    job_config = bigquery.LoadJobConfig()
    job_config.write_disposition = bigquery.WriteDisposition.WRITE_APPEND
    job_config.schema_update_options = [
        bigquery.SchemaUpdateOption.ALLOW_FIELD_RELAXATION
    ]
    # In this example, the existing table contains three required fields
    # ('full_name', 'age', and 'favorite_color'), while the data to load
    # contains only the first two fields.
    job_config.schema = [
        bigquery.SchemaField("full_name", "STRING", mode="REQUIRED"),
        bigquery.SchemaField("age", "INTEGER", mode="REQUIRED"),
    ]
    job_config.source_format = bigquery.SourceFormat.CSV
    job_config.skip_leading_rows = 1

    with open(filepath, "rb") as source_file:
        job = client.load_table_from_file(
            source_file,
            table_ref,
            location="US",  # Must match the destination dataset location.
            job_config=job_config,
        )  # API request

    job.result()  # Waits for table load to complete.
    print(
        "Loaded {} rows into {}:{}.".format(
            job.output_rows, dataset_id, table_ref.table_id
        )
    )

    # Checks the updated number of required fields
    table = client.get_table(table)
    current_required_fields = sum(field.mode == "REQUIRED" for field in table.schema)
    print("{} fields in the schema are now required.".format(current_required_fields))
    # [END bigquery_relax_column_load_append]
    assert original_required_fields - current_required_fields == 1
    assert len(table.schema) == 3
    assert table.schema[2].mode == "NULLABLE"
    assert table.num_rows > 0


def test_extract_table(client, to_delete):
    bucket_name = "extract_shakespeare_{}".format(_millis())
    storage_client = storage.Client()
    bucket = retry_storage_errors(storage_client.create_bucket)(bucket_name)
    to_delete.append(bucket)

    # [START bigquery_extract_table]
    # from google.cloud import bigquery
    # client = bigquery.Client()
    # bucket_name = 'my-bucket'
    project = "bigquery-public-data"
    dataset_id = "samples"
    table_id = "shakespeare"

    destination_uri = "gs://{}/{}".format(bucket_name, "shakespeare.csv")
    dataset_ref = bigquery.DatasetReference(project, dataset_id)
    table_ref = dataset_ref.table(table_id)

    extract_job = client.extract_table(
        table_ref,
        destination_uri,
        # Location must match that of the source table.
        location="US",
    )  # API request
    extract_job.result()  # Waits for job to complete.

    print(
        "Exported {}:{}.{} to {}".format(project, dataset_id, table_id, destination_uri)
    )
    # [END bigquery_extract_table]

    blob = retry_storage_errors(bucket.get_blob)("shakespeare.csv")
    assert blob.exists
    assert blob.size > 0
    to_delete.insert(0, blob)


def test_extract_table_json(client, to_delete):
    bucket_name = "extract_shakespeare_json_{}".format(_millis())
    storage_client = storage.Client()
    bucket = retry_storage_errors(storage_client.create_bucket)(bucket_name)
    to_delete.append(bucket)
    project = "bigquery-public-data"
    dataset_id = "samples"

    # [START bigquery_extract_table_json]
    # from google.cloud import bigquery
    # client = bigquery.Client()
    # bucket_name = 'my-bucket'

    destination_uri = "gs://{}/{}".format(bucket_name, "shakespeare.json")
    dataset_ref = bigquery.DatasetReference(project, dataset_id)
    table_ref = dataset_ref.table("shakespeare")
    job_config = bigquery.job.ExtractJobConfig()
    job_config.destination_format = bigquery.DestinationFormat.NEWLINE_DELIMITED_JSON

    extract_job = client.extract_table(
        table_ref,
        destination_uri,
        job_config=job_config,
        # Location must match that of the source table.
        location="US",
    )  # API request
    extract_job.result()  # Waits for job to complete.
    # [END bigquery_extract_table_json]

    blob = retry_storage_errors(bucket.get_blob)("shakespeare.json")
    assert blob.exists
    assert blob.size > 0
    to_delete.insert(0, blob)


def test_extract_table_compressed(client, to_delete):
    bucket_name = "extract_shakespeare_compress_{}".format(_millis())
    storage_client = storage.Client()
    bucket = retry_storage_errors(storage_client.create_bucket)(bucket_name)
    to_delete.append(bucket)
    project = "bigquery-public-data"
    dataset_id = "samples"

    # [START bigquery_extract_table_compressed]
    # from google.cloud import bigquery
    # client = bigquery.Client()
    # bucket_name = 'my-bucket'

    destination_uri = "gs://{}/{}".format(bucket_name, "shakespeare.csv.gz")
    dataset_ref = bigquery.DatasetReference(project, dataset_id)
    table_ref = dataset_ref.table("shakespeare")
    job_config = bigquery.job.ExtractJobConfig()
    job_config.compression = bigquery.Compression.GZIP

    extract_job = client.extract_table(
        table_ref,
        destination_uri,
        # Location must match that of the source table.
        location="US",
        job_config=job_config,
    )  # API request
    extract_job.result()  # Waits for job to complete.
    # [END bigquery_extract_table_compressed]

    blob = retry_storage_errors(bucket.get_blob)("shakespeare.csv.gz")
    assert blob.exists
    assert blob.size > 0
    to_delete.insert(0, blob)


def test_client_query_total_rows(client, capsys):
    """Run a query and just check for how many rows."""
    # [START bigquery_query_total_rows]
    # from google.cloud import bigquery
    # client = bigquery.Client()

    query = (
        "SELECT name FROM `bigquery-public-data.usa_names.usa_1910_2013` "
        'WHERE state = "TX" '
        "LIMIT 100"
    )
    results = client.query_and_wait(
        query,
        # Location must match that of the dataset(s) referenced in the query.
        location="US",
    )  # API request - starts the query and waits for results.

    print("Got {} rows.".format(results.total_rows))
    # [END bigquery_query_total_rows]

    out, _ = capsys.readouterr()
    assert "Got 100 rows." in out


def test_ddl_create_view(client, to_delete, capsys):
    """Create a view via a DDL query."""
    project = client.project
    dataset_id = "ddl_view_{}".format(_millis())
    table_id = "new_view"
    dataset_ref = bigquery.DatasetReference(project, dataset_id)
    dataset = bigquery.Dataset(dataset_ref)
    client.create_dataset(dataset)
    to_delete.append(dataset)

    # [START bigquery_ddl_create_view]
    # from google.cloud import bigquery
    # project = 'my-project'
    # dataset_id = 'my_dataset'
    # table_id = 'new_view'
    # client = bigquery.Client(project=project)

    sql = """
    CREATE VIEW `{}.{}.{}`
    OPTIONS(
        expiration_timestamp=TIMESTAMP_ADD(
            CURRENT_TIMESTAMP(), INTERVAL 48 HOUR),
        friendly_name="new_view",
        description="a view that expires in 2 days",
        labels=[("org_unit", "development")]
    )
    AS SELECT name, state, year, number
        FROM `bigquery-public-data.usa_names.usa_1910_current`
        WHERE state LIKE 'W%'
    """.format(
        project, dataset_id, table_id
    )

    job = client.query(sql)  # API request.
    job.result()  # Waits for the query to finish.

    print(
        'Created new view "{}.{}.{}".'.format(
            job.destination.project,
            job.destination.dataset_id,
            job.destination.table_id,
        )
    )
    # [END bigquery_ddl_create_view]

    out, _ = capsys.readouterr()
    assert 'Created new view "{}.{}.{}".'.format(project, dataset_id, table_id) in out

    # Test that listing query result rows succeeds so that generic query
    # processing tools work with DDL statements.
    rows = list(job)
    assert len(rows) == 0

    if pandas is not None:
        df = job.to_dataframe()
        assert len(df) == 0


@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_query_results_as_dataframe(client):
    # [START bigquery_query_results_dataframe]
    # from google.cloud import bigquery
    # client = bigquery.Client()

    sql = """
        SELECT name, SUM(number) as count
        FROM `bigquery-public-data.usa_names.usa_1910_current`
        GROUP BY name
        ORDER BY count DESC
        LIMIT 10
    """

    df = client.query_and_wait(sql).to_dataframe()
    # [END bigquery_query_results_dataframe]
    assert isinstance(df, pandas.DataFrame)
    assert len(list(df)) == 2  # verify the number of columns
    assert len(df) == 10  # verify the number of rows


@pytest.mark.skipif(pandas is None, reason="Requires `pandas`")
def test_list_rows_as_dataframe(client):
    # [START bigquery_list_rows_dataframe]
    # from google.cloud import bigquery
    # client = bigquery.Client()
    project = "bigquery-public-data"
    dataset_id = "samples"

    dataset_ref = bigquery.DatasetReference(project, dataset_id)
    table_ref = dataset_ref.table("shakespeare")
    table = client.get_table(table_ref)

    df = client.list_rows(table).to_dataframe()
    # [END bigquery_list_rows_dataframe]
    assert isinstance(df, pandas.DataFrame)
    assert len(list(df)) == len(table.schema)  # verify the number of columns
    assert len(df) == table.num_rows  # verify the number of rows


if __name__ == "__main__":
    pytest.main()