File size: 21,647 Bytes
065fee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import datetime
import re
from unittest import mock

import pytest

import google.api_core.exceptions
import google.api_core.retry
import freezegun
import requests.exceptions

from google.cloud.bigquery import _job_helpers
import google.cloud.bigquery.retry

from .helpers import make_client, make_connection


_RETRY_NOT_FOUND = {
    "job_retry": google.api_core.retry.Retry(
        predicate=google.api_core.retry.if_exception_type(
            google.api_core.exceptions.NotFound,
        ),
    ),
}
_RETRY_BAD_REQUEST = {
    "job_retry": google.api_core.retry.Retry(
        predicate=google.api_core.retry.if_exception_type(
            google.api_core.exceptions.BadRequest,
        ),
    ),
}


# Test retry of job failures, instead of API-invocation failures. 4 scenarios:
# - No `job_retry` passed, retry on default rateLimitExceeded.
# - Pass NotFound retry to `query`.
# - Pass NotFound retry to `result`.
# - Pass BadRequest retry to query, with the value passed to `result` overriding.
@mock.patch("time.sleep")
@pytest.mark.parametrize(
    "reason, job_retry, result_retry",
    [
        pytest.param(
            "rateLimitExceeded",
            {},
            {},
            id="no job_retry",
        ),
        pytest.param(
            "notFound",
            _RETRY_NOT_FOUND,
            {},
            id="Query NotFound",
        ),
        pytest.param(
            "notFound",
            _RETRY_NOT_FOUND,
            _RETRY_NOT_FOUND,
            id="Result NotFound",
        ),
        pytest.param(
            "notFound",
            _RETRY_BAD_REQUEST,
            _RETRY_NOT_FOUND,
            id="BadRequest",
        ),
    ],
)
def test_retry_failed_jobs(sleep, reason, job_retry, result_retry):
    client = make_client()
    err = dict(reason=reason)
    conn = client._connection = make_connection(
        dict(
            status=dict(state="DONE", errors=[err], errorResult=err),
            jobReference={"jobId": "id_1"},
        ),
        dict(
            status=dict(state="DONE", errors=[err], errorResult=err),
            jobReference={"jobId": "id_1"},
        ),
        dict(
            status=dict(state="DONE", errors=[err], errorResult=err),
            jobReference={"jobId": "id_1"},
        ),
        dict(status=dict(state="DONE"), jobReference={"jobId": "id_2"}),
        dict(rows=[{"f": [{"v": "1"}]}], totalRows="1"),
    )

    job = client.query("select 1", **job_retry)
    result = job.result(**result_retry)

    assert result.total_rows == 1

    # We made all the calls we expected to.
    assert conn.api_request.call_count == 5

    # The job adjusts it's job id based on the id of the last attempt.
    assert job.job_id == "id_2"

    # We had to sleep three times
    assert len(sleep.mock_calls) == 3

    # Sleeps are random, however they're more than 0
    assert min(c[1][0] for c in sleep.mock_calls) > 0

    # They're at most 2 * (multiplier**(number of sleeps - 1)) * initial
    # The default multiplier is 2
    assert max(c[1][0] for c in sleep.mock_calls) <= 8

    # We can ask for the result again:
    conn = client._connection = make_connection(
        dict(rows=[{"f": [{"v": "1"}]}], totalRows="1"),
    )
    result = job.result()

    assert result.total_rows == 1

    # We made all the calls we expected to.
    assert conn.api_request.call_count == 1

    # We wouldn't (and didn't) fail, because we're dealing with a successful job.
    # So the job id hasn't changed.
    assert job.job_id == "id_2"


def test_retry_connection_error_with_default_retries_and_successful_first_job(
    monkeypatch, client
):
    """
    Make sure ConnectionError can be retried at `is_job_done` level, even if
    retries are exhaused by API-level retry.

    Note: Because restart_query_job is set to True only in the case of a
    confirmed job failure, this should be safe to do even when a job is not
    idempotent.

    Regression test for issue
    https://github.com/googleapis/python-bigquery/issues/1929
    """
    job_counter = 0

    def make_job_id(*args, **kwargs):
        nonlocal job_counter
        job_counter += 1
        return f"{job_counter}"

    monkeypatch.setattr(_job_helpers, "make_job_id", make_job_id)
    conn = client._connection = make_connection()
    project = client.project
    job_reference_1 = {"projectId": project, "jobId": "1", "location": "test-loc"}
    NUM_API_RETRIES = 2

    with freezegun.freeze_time(
        "2024-01-01 00:00:00",
        # Note: because of exponential backoff and a bit of jitter,
        # NUM_API_RETRIES will get less accurate the greater the value.
        # We add 1 because we know there will be at least some additional
        # calls to fetch the time / sleep before the retry deadline is hit.
        auto_tick_seconds=(
            google.cloud.bigquery.retry._DEFAULT_RETRY_DEADLINE / NUM_API_RETRIES
        )
        + 1,
    ):
        conn.api_request.side_effect = [
            # jobs.insert
            {"jobReference": job_reference_1, "status": {"state": "PENDING"}},
            # jobs.get
            {"jobReference": job_reference_1, "status": {"state": "RUNNING"}},
            # jobs.getQueryResults x2
            requests.exceptions.ConnectionError(),
            requests.exceptions.ConnectionError(),
            # jobs.get
            # Job actually succeeeded, so we shouldn't be restarting the job,
            # even though we are retrying at the `is_job_done` level.
            {"jobReference": job_reference_1, "status": {"state": "DONE"}},
            # jobs.getQueryResults
            {"jobReference": job_reference_1, "jobComplete": True},
        ]

        job = client.query("select 1")
        rows_iter = job.result()

    assert job.done()  # Shouldn't make any additional API calls.
    assert rows_iter is not None

    # Should only have created one job, even though we did call job_retry.
    assert job_counter == 1

    # Double-check that we made the API calls we expected to make.
    conn.api_request.assert_has_calls(
        [
            # jobs.insert
            mock.call(
                method="POST",
                path="/projects/PROJECT/jobs",
                data={
                    "jobReference": {"jobId": "1", "projectId": "PROJECT"},
                    "configuration": {
                        "query": {"useLegacySql": False, "query": "select 1"}
                    },
                },
                timeout=None,
            ),
            # jobs.get
            mock.call(
                method="GET",
                path="/projects/PROJECT/jobs/1",
                query_params={"location": "test-loc", "projection": "full"},
                timeout=google.cloud.bigquery.retry.DEFAULT_GET_JOB_TIMEOUT,
            ),
            # jobs.getQueryResults x2
            mock.call(
                method="GET",
                path="/projects/PROJECT/queries/1",
                query_params={"maxResults": 0, "location": "test-loc"},
                timeout=None,
            ),
            mock.call(
                method="GET",
                path="/projects/PROJECT/queries/1",
                query_params={"maxResults": 0, "location": "test-loc"},
                timeout=None,
            ),
            # jobs.get -- is_job_done checking again
            mock.call(
                method="GET",
                path="/projects/PROJECT/jobs/1",
                query_params={"location": "test-loc", "projection": "full"},
                timeout=google.cloud.bigquery.retry.DEFAULT_GET_JOB_TIMEOUT,
            ),
            # jobs.getQueryResults
            mock.call(
                method="GET",
                path="/projects/PROJECT/queries/1",
                query_params={"maxResults": 0, "location": "test-loc"},
                timeout=None,
            ),
        ],
    )


def test_query_retry_with_default_retry_and_ambiguous_errors_only_retries_with_failed_job(
    client, monkeypatch
):
    """
    Some errors like 'rateLimitExceeded' can be ambiguous. Make sure we only
    retry the job when we know for sure that the job has failed for a retriable
    reason. We can only be sure after a "successful" call to jobs.get to fetch
    the failed job status.
    """
    job_counter = 0

    def make_job_id(*args, **kwargs):
        nonlocal job_counter
        job_counter += 1
        return f"{job_counter}"

    monkeypatch.setattr(_job_helpers, "make_job_id", make_job_id)

    project = client.project
    job_reference_1 = {"projectId": project, "jobId": "1", "location": "test-loc"}
    job_reference_2 = {"projectId": project, "jobId": "2", "location": "test-loc"}
    NUM_API_RETRIES = 2

    # This error is modeled after a real customer exception in
    # https://github.com/googleapis/python-bigquery/issues/707.
    internal_error = google.api_core.exceptions.InternalServerError(
        "Job failed just because...",
        errors=[
            {"reason": "internalError"},
        ],
    )
    responses = [
        # jobs.insert
        {"jobReference": job_reference_1, "status": {"state": "PENDING"}},
        # jobs.get
        {"jobReference": job_reference_1, "status": {"state": "RUNNING"}},
        # jobs.getQueryResults x2
        #
        # Note: internalError is ambiguous in jobs.getQueryResults. The
        # problem could be at the Google Frontend level or it could be because
        # the job has failed due to some transient issues and the BigQuery
        # REST API is translating the job failed status into failure HTTP
        # codes.
        #
        # TODO(GH#1903): We shouldn't retry nearly this many times when we get
        # ambiguous errors from jobs.getQueryResults.
        # See: https://github.com/googleapis/python-bigquery/issues/1903
        internal_error,
        internal_error,
        # jobs.get -- the job has failed
        {
            "jobReference": job_reference_1,
            "status": {"state": "DONE", "errorResult": {"reason": "internalError"}},
        },
        # jobs.insert
        {"jobReference": job_reference_2, "status": {"state": "PENDING"}},
        # jobs.get
        {"jobReference": job_reference_2, "status": {"state": "RUNNING"}},
        # jobs.getQueryResults
        {"jobReference": job_reference_2, "jobComplete": True},
        # jobs.get
        {"jobReference": job_reference_2, "status": {"state": "DONE"}},
    ]

    conn = client._connection = make_connection(*responses)

    with freezegun.freeze_time(
        # Note: because of exponential backoff and a bit of jitter,
        # NUM_API_RETRIES will get less accurate the greater the value.
        # We add 1 because we know there will be at least some additional
        # calls to fetch the time / sleep before the retry deadline is hit.
        auto_tick_seconds=(
            google.cloud.bigquery.retry._DEFAULT_RETRY_DEADLINE / NUM_API_RETRIES
        )
        + 1,
    ):
        job = client.query("select 1")
        job.result()

    conn.api_request.assert_has_calls(
        [
            # jobs.insert
            mock.call(
                method="POST",
                path="/projects/PROJECT/jobs",
                data={
                    "jobReference": {"jobId": "1", "projectId": "PROJECT"},
                    "configuration": {
                        "query": {"useLegacySql": False, "query": "select 1"}
                    },
                },
                timeout=None,
            ),
            # jobs.get
            mock.call(
                method="GET",
                path="/projects/PROJECT/jobs/1",
                query_params={"location": "test-loc", "projection": "full"},
                timeout=google.cloud.bigquery.retry.DEFAULT_GET_JOB_TIMEOUT,
            ),
            # jobs.getQueryResults x2
            mock.call(
                method="GET",
                path="/projects/PROJECT/queries/1",
                query_params={"maxResults": 0, "location": "test-loc"},
                timeout=None,
            ),
            mock.call(
                method="GET",
                path="/projects/PROJECT/queries/1",
                query_params={"maxResults": 0, "location": "test-loc"},
                timeout=None,
            ),
            # jobs.get -- verify that the job has failed
            mock.call(
                method="GET",
                path="/projects/PROJECT/jobs/1",
                query_params={"location": "test-loc", "projection": "full"},
                timeout=google.cloud.bigquery.retry.DEFAULT_GET_JOB_TIMEOUT,
            ),
            # jobs.insert
            mock.call(
                method="POST",
                path="/projects/PROJECT/jobs",
                data={
                    "jobReference": {
                        # Make sure that we generated a new job ID.
                        "jobId": "2",
                        "projectId": "PROJECT",
                    },
                    "configuration": {
                        "query": {"useLegacySql": False, "query": "select 1"}
                    },
                },
                timeout=None,
            ),
            # jobs.get
            mock.call(
                method="GET",
                path="/projects/PROJECT/jobs/2",
                query_params={"location": "test-loc", "projection": "full"},
                timeout=google.cloud.bigquery.retry.DEFAULT_GET_JOB_TIMEOUT,
            ),
            # jobs.getQueryResults
            mock.call(
                method="GET",
                path="/projects/PROJECT/queries/2",
                query_params={"maxResults": 0, "location": "test-loc"},
                timeout=None,
            ),
            # jobs.get
            mock.call(
                method="GET",
                path="/projects/PROJECT/jobs/2",
                query_params={"location": "test-loc", "projection": "full"},
                timeout=google.cloud.bigquery.retry.DEFAULT_GET_JOB_TIMEOUT,
            ),
        ]
    )


# With job_retry_on_query, we're testing 4 scenarios:
# - Pass None retry to `query`.
# - Pass None retry to `result`.
@pytest.mark.parametrize("job_retry_on_query", ["Query", "Result"])
@mock.patch("time.sleep")
def test_disable_retry_failed_jobs(sleep, client, job_retry_on_query):
    """
    Test retry of job failures, as opposed to API-invocation failures.
    """
    err = dict(reason="rateLimitExceeded")
    responses = [dict(status=dict(state="DONE", errors=[err], errorResult=err))] * 3

    def api_request(method, path, query_params=None, data=None, **kw):
        response = responses.pop(0)
        response["jobReference"] = data["jobReference"]
        return response

    conn = client._connection = make_connection()
    conn.api_request.side_effect = api_request

    if job_retry_on_query == "Query":
        job_retry = dict(job_retry=None)
    else:
        job_retry = {}
    job = client.query("select 1", **job_retry)

    orig_job_id = job.job_id
    job_retry = dict(job_retry=None) if job_retry_on_query == "Result" else {}
    with pytest.raises(google.api_core.exceptions.Forbidden):
        job.result(**job_retry)

    assert job.job_id == orig_job_id
    assert len(sleep.mock_calls) == 0


@mock.patch("time.sleep")
def test_retry_failed_jobs_after_retry_failed(sleep, client):
    """
    If at first you don't succeed, maybe you will later. :)
    """
    conn = client._connection = make_connection()

    with freezegun.freeze_time("2024-01-01 00:00:00") as frozen_datetime:
        err = dict(reason="rateLimitExceeded")

        def api_request(method, path, query_params=None, data=None, **kw):
            calls = sleep.mock_calls
            if calls:
                frozen_datetime.tick(delta=datetime.timedelta(seconds=calls[-1][1][0]))
            response = dict(status=dict(state="DONE", errors=[err], errorResult=err))
            response["jobReference"] = data["jobReference"]
            return response

        conn.api_request.side_effect = api_request

        job = client.query("select 1")
        orig_job_id = job.job_id

        with pytest.raises(google.api_core.exceptions.RetryError):
            job.result()

        # We retried the job at least once, so we should have generated a new job ID.
        assert job.job_id != orig_job_id

        # We failed because we couldn't succeed after 120 seconds.
        # But we can try again:
        err2 = dict(reason="backendError")  # We also retry on this
        responses = [
            dict(status=dict(state="DONE", errors=[err2], errorResult=err2)),
            dict(status=dict(state="DONE", errors=[err], errorResult=err)),
            dict(status=dict(state="DONE", errors=[err2], errorResult=err2)),
            dict(status=dict(state="DONE")),
            dict(rows=[{"f": [{"v": "1"}]}], totalRows="1"),
        ]

        def api_request(method, path, query_params=None, data=None, **kw):
            calls = sleep.mock_calls
            frozen_datetime.tick(delta=datetime.timedelta(seconds=calls[-1][1][0]))
            response = responses.pop(0)
            if data:
                response["jobReference"] = data["jobReference"]
            else:
                response["jobReference"] = dict(
                    jobId=path.split("/")[-1], projectId="PROJECT"
                )
            return response

        conn.api_request.side_effect = api_request
        result = job.result()
        assert result.total_rows == 1
        assert not responses  # We made all the calls we expected to.
        assert job.job_id != orig_job_id


def test_raises_on_job_retry_on_query_with_non_retryable_jobs(client):
    with pytest.raises(
        TypeError,
        match=re.escape(
            "`job_retry` was provided, but the returned job is"
            " not retryable, because a custom `job_id` was"
            " provided."
        ),
    ):
        client.query("select 42", job_id=42, job_retry=google.api_core.retry.Retry())


def test_raises_on_job_retry_on_result_with_non_retryable_jobs(client):
    client._connection = make_connection({})
    job = client.query("select 42", job_id=42)
    with pytest.raises(
        TypeError,
        match=re.escape(
            "`job_retry` was provided, but this job is"
            " not retryable, because a custom `job_id` was"
            " provided to the query that created this job."
        ),
    ):
        job.result(job_retry=google.api_core.retry.Retry())


def test_query_and_wait_retries_job_for_DDL_queries():
    """
    Specific test for retrying DDL queries with "jobRateLimitExceeded" error:
    https://github.com/googleapis/python-bigquery/issues/1790
    """
    freezegun.freeze_time(auto_tick_seconds=1)

    client = make_client()
    conn = client._connection = make_connection(
        {
            "jobReference": {
                "projectId": "response-project",
                "jobId": "abc",
                "location": "response-location",
            },
            "jobComplete": False,
        },
        google.api_core.exceptions.InternalServerError(
            "job_retry me", errors=[{"reason": "jobRateLimitExceeded"}]
        ),
        google.api_core.exceptions.BadRequest(
            "retry me", errors=[{"reason": "jobRateLimitExceeded"}]
        ),
        {
            "jobReference": {
                "projectId": "response-project",
                "jobId": "abc",
                "location": "response-location",
            },
            "jobComplete": True,
            "schema": {
                "fields": [
                    {"name": "full_name", "type": "STRING", "mode": "REQUIRED"},
                    {"name": "age", "type": "INT64", "mode": "NULLABLE"},
                ],
            },
            "rows": [
                {"f": [{"v": "Whillma Phlyntstone"}, {"v": "27"}]},
                {"f": [{"v": "Bhetty Rhubble"}, {"v": "28"}]},
                {"f": [{"v": "Phred Phlyntstone"}, {"v": "32"}]},
                {"f": [{"v": "Bharney Rhubble"}, {"v": "33"}]},
            ],
        },
    )
    rows = _job_helpers.query_and_wait(
        client,
        query="SELECT 1",
        location="request-location",
        project="request-project",
        job_config=None,
        page_size=None,
        max_results=None,
        retry=google.cloud.bigquery.retry.DEFAULT_RETRY,
        job_retry=google.cloud.bigquery.retry.DEFAULT_JOB_RETRY,
    )
    assert len(list(rows)) == 4

    # Relevant docs for the REST API path: https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs/query
    # and https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs/getQueryResults
    query_request_path = "/projects/request-project/queries"

    calls = conn.api_request.call_args_list
    _, kwargs = calls[0]
    assert kwargs["method"] == "POST"
    assert kwargs["path"] == query_request_path

    # TODO: Add assertion statements for response paths after PR#1797 is fixed

    _, kwargs = calls[3]
    assert kwargs["method"] == "POST"
    assert kwargs["path"] == query_request_path