Asib27's picture
try 1
065fee7 verified
raw
history blame
21.7 kB
import datetime
import typing
from io import StringIO
from math import ceil
from test.utils import pandas_only
from unittest.mock import Mock, PropertyMock, mock_open, patch
import pytest # type: ignore
from redshift_connector import Connection, Cursor, DataError, InterfaceError
IS_SINGLE_DATABASE_METADATA_TOGGLE: typing.List[bool] = [True, False]
description_warn_response_data: typing.List[typing.Tuple[bytes, str]] = [
(b"ab\xffcd", "failed to decode column name"),
]
@pytest.mark.parametrize("_input", description_warn_response_data)
def test_get_description_warns_user(_input) -> None:
data, exp_warning_msg = _input
mock_cursor: Cursor = Cursor.__new__(Cursor)
mock_cursor.__setattr__("ps", {"row_desc": [{"type_oid": 1043, "label": data, "column_name": b"c1"}]})
with pytest.warns(UserWarning, match=exp_warning_msg):
mock_cursor.description
fetch_df_warn_response_data: typing.List[typing.Tuple[typing.Optional[typing.List[bytes]], str]] = [
(None, "No row description was found. pandas dataframe will be missing column labels."),
]
@pandas_only
@pytest.mark.parametrize("_input", fetch_df_warn_response_data)
def test_fetch_dataframe_warns_user(_input, mocker) -> None:
data, exp_warning_msg = _input
mock_cursor: Cursor = Cursor.__new__(Cursor)
mocker.patch("redshift_connector.Cursor._getDescription", return_value=[data])
mocker.patch("redshift_connector.Cursor.__next__", return_value=["blah"])
with pytest.warns(UserWarning, match=exp_warning_msg):
mock_cursor.fetch_dataframe(1)
@pandas_only
def test_fetch_dataframe_no_results(mocker) -> None:
mock_cursor: Cursor = Cursor.__new__(Cursor)
mocker.patch("redshift_connector.Cursor._getDescription", return_value=["test"])
mocker.patch("redshift_connector.Cursor.__next__", side_effect=StopIteration("mocked end"))
assert mock_cursor.fetch_dataframe(1).size == 0
def test_raw_connection_property_warns() -> None:
mock_cursor: Cursor = Cursor.__new__(Cursor)
mock_cursor._c = Connection.__new__(Connection)
with pytest.warns(UserWarning, match="DB-API extension cursor.connection used"):
mock_cursor.connection
def test_get_description_no_ps() -> None:
mock_cursor: Cursor = Cursor.__new__(Cursor)
mock_cursor.ps = None
assert mock_cursor._getDescription() is None
def test_execute_no_connection_raises_interface_error() -> None:
mock_cursor: Cursor = Cursor.__new__(Cursor)
mock_cursor._c = None
with pytest.raises(InterfaceError, match="Cursor closed"):
mock_cursor.execute("blah")
get_procedure_arg_data: typing.List[typing.Tuple[typing.Optional[str], ...]] = [
("apples", "blueberries", "oranges"),
(None, "laffytaffy", "gobstoppers"),
("chocolate", None, "coffee"),
("pumpkin", "spaghetti_squash", None),
(None, "a%", None),
(None, "_b_", None),
]
@pytest.mark.parametrize("_input", get_procedure_arg_data)
def test_get_procedures_considers_args(_input, mocker) -> None:
catalog, schema_pattern, procedure_name_pattern = _input
mocker.patch("redshift_connector.Cursor.execute", return_value=None)
mocker.patch("redshift_connector.Cursor.fetchall", return_value=None)
mocker.patch("redshift_connector.Connection.is_single_database_metadata", return_value=True)
mock_cursor: Cursor = Cursor.__new__(Cursor)
mock_connection: Connection = Connection.__new__(Connection)
mock_cursor._c = mock_connection
mock_cursor.paramstyle = "mocked_val"
spy = mocker.spy(mock_cursor, "execute")
mock_cursor.get_procedures(catalog, schema_pattern, procedure_name_pattern)
assert spy.called
assert spy.call_count == 1
assert catalog not in spy.call_args[0][1]
for arg in (schema_pattern, procedure_name_pattern):
if arg is not None:
assert arg in spy.call_args[0][1]
catalog_filter_conditions_data: typing.List[typing.Tuple[typing.Optional[str], bool, typing.Optional[str]]] = [
("apples", True, "oranges"),
("peanuts", False, "walnuts"),
(None, True, "pecans"),
(None, False, "pistachios"),
("blue", True, None),
("green", False, None),
(None, True, None),
(None, False, None),
]
@pytest.mark.parametrize("is_single_database_metadata_val", IS_SINGLE_DATABASE_METADATA_TOGGLE)
@pytest.mark.parametrize("_input", catalog_filter_conditions_data)
def test__get_catalog_filter_conditions_considers_args(_input, is_single_database_metadata_val) -> None:
catalog, api_supported_only_for_connected_database, database_col_name = _input
mock_cursor: Cursor = Cursor.__new__(Cursor)
mock_connection: Connection = Connection.__new__(Connection)
mock_cursor._c = mock_connection
with patch(
"redshift_connector.Connection.is_single_database_metadata", new_callable=PropertyMock()
) as mock_is_single_database_metadata:
mock_is_single_database_metadata.__get__ = Mock(return_value=is_single_database_metadata_val)
result: str = mock_cursor._get_catalog_filter_conditions(
catalog, api_supported_only_for_connected_database, database_col_name
)
if catalog is not None:
assert catalog in result
if is_single_database_metadata_val or api_supported_only_for_connected_database:
assert "current_database()" in result
assert catalog in result
elif database_col_name is None:
assert "database_name" in result
else:
assert database_col_name in result
else:
assert result == ""
get_schemas_arg_data: typing.List[typing.Tuple[typing.Optional[str], ...]] = [
("lipbalm", "cherry"),
("lavender", "chamomille"),
("pumpkin", None),
(None, "volcano"),
(None, None),
]
@pytest.mark.parametrize("is_single_database_metadata_val", IS_SINGLE_DATABASE_METADATA_TOGGLE)
@pytest.mark.parametrize("_input", get_schemas_arg_data)
def test_get_schemas_considers_args(_input, is_single_database_metadata_val, mocker) -> None:
catalog, schema_pattern = _input
mocker.patch("redshift_connector.Cursor.execute", return_value=None)
mocker.patch("redshift_connector.Cursor.fetchall", return_value=None)
mock_cursor: Cursor = Cursor.__new__(Cursor)
mock_cursor.paramstyle = "mocked"
mock_connection: Connection = Connection.__new__(Connection)
mock_cursor._c = mock_connection
spy = mocker.spy(mock_cursor, "execute")
with patch(
"redshift_connector.Connection.is_single_database_metadata", new_callable=PropertyMock()
) as mock_is_single_database_metadata:
mock_is_single_database_metadata.__get__ = Mock(return_value=is_single_database_metadata_val)
mock_cursor.get_schemas(catalog, schema_pattern)
assert spy.called
assert spy.call_count == 1
if schema_pattern is not None: # should be in parameterized portion
assert schema_pattern in spy.call_args[0][1]
if catalog is not None:
assert catalog in spy.call_args[0][0]
@pytest.mark.parametrize("is_single_database_metadata_val", IS_SINGLE_DATABASE_METADATA_TOGGLE)
def test_get_catalogs_considers_args(is_single_database_metadata_val, mocker) -> None:
mocker.patch("redshift_connector.Cursor.execute", return_value=None)
mocker.patch("redshift_connector.Cursor.fetchall", return_value=None)
mock_cursor: Cursor = Cursor.__new__(Cursor)
mock_cursor.paramstyle = "mocked"
mock_connection: Connection = Connection.__new__(Connection)
mock_cursor._c = mock_connection
spy = mocker.spy(mock_cursor, "execute")
with patch(
"redshift_connector.Connection.is_single_database_metadata", new_callable=PropertyMock()
) as mock_is_single_database_metadata:
mock_is_single_database_metadata.__get__ = Mock(return_value=is_single_database_metadata_val)
mock_cursor.get_catalogs()
assert spy.called
assert spy.call_count == 1
if is_single_database_metadata_val:
assert "select current_database as TABLE_CAT FROM current_database()" in spy.call_args[0][0]
else:
assert (
"SELECT CAST(database_name AS varchar(124)) AS TABLE_CAT FROM PG_CATALOG.SVV_REDSHIFT_DATABASES "
in spy.call_args[0][0]
)
get_tables_arg_data: typing.List[typing.Tuple[typing.Optional[str], ...]] = [
("apples", "oranges", "peaches"),
(None, "blocks", "legos"),
("trains", None, "planes"),
("lions", "tigers", None),
(None, None, None),
]
# "NO_SCHEMA_UNIVERSAL_QUERY" is excluded, as that case is hit in __schema_pattern_match when schema_pattern is None
@pytest.mark.parametrize("schema_pattern_type", ["EXTERNAL_SCHEMA_QUERY", "LOCAL_SCHEMA_QUERY"])
@pytest.mark.parametrize("is_single_database_metadata_val", IS_SINGLE_DATABASE_METADATA_TOGGLE)
@pytest.mark.parametrize("_input", get_tables_arg_data)
def test_get_tables_considers_args(is_single_database_metadata_val, _input, schema_pattern_type, mocker) -> None:
catalog, schema_pattern, table_name_pattern = _input
mocker.patch("redshift_connector.Cursor.execute", return_value=None)
# mock the return value from __schema_pattern_match as it's return value is used in get_tables()
# the other potential call to this method in get_tables() result is simply returned, so at this time
# it has no impact
mocker.patch(
"redshift_connector.Cursor.fetchall",
return_value=None if schema_pattern_type == "EXTERNAL_SCHEMA_QUERY" else tuple("mock"),
)
mock_cursor: Cursor = Cursor.__new__(Cursor)
mock_cursor.paramstyle = "mocked"
mock_connection: Connection = Connection.__new__(Connection)
mock_cursor._c = mock_connection
spy = mocker.spy(mock_cursor, "execute")
with patch(
"redshift_connector.Connection.is_single_database_metadata", new_callable=PropertyMock()
) as mock_is_single_database_metadata:
mock_is_single_database_metadata.__get__ = Mock(return_value=is_single_database_metadata_val)
mock_cursor.get_tables(catalog, schema_pattern, table_name_pattern)
assert spy.called
if schema_pattern is not None and is_single_database_metadata_val:
assert spy.call_count == 2 # call in __schema_pattern_match(), get_tables()
else:
assert spy.call_count == 1
if catalog is not None:
assert catalog in spy.call_args[0][0]
for arg in (schema_pattern, table_name_pattern):
if arg is not None:
assert arg in spy.call_args[0][1]
@pytest.mark.parametrize("indexes, names", [([1], []), ([], ["c1"])])
def test_insert_data_column_names_indexes_mismatch_raises(indexes, names, mocker) -> None:
# mock fetchone to return "True" to ensure the table_name and column_name
# validation steps pass
mocker.patch("redshift_connector.Cursor.fetchone", return_value=[1])
mock_cursor: Cursor = Cursor.__new__(Cursor)
# mock out the connection
mock_cursor._c = Mock()
mock_cursor.paramstyle = "qmark"
with pytest.raises(InterfaceError, match="Column names and parameter indexes must be the same length"):
mock_cursor.insert_data_bulk(
filename="test_file",
table_name="test_table",
parameter_indices=indexes,
column_names=names,
delimiter=",",
)
insert_bulk_data = [
(
[0],
["col1"],
("INSERT INTO test_table (col1) VALUES (%s), (%s), (%s);", ["1", "2", "-1"]),
),
(
[1],
["col2"],
("INSERT INTO test_table (col2) VALUES (%s), (%s), (%s);", ["3", "5", "7"]),
),
(
[2],
["col3"],
(
"INSERT INTO test_table (col3) VALUES (%s), (%s), (%s);",
["foo", "bar", "baz"],
),
),
(
[0, 1],
["col1", "col2"],
(
"INSERT INTO test_table (col1, col2) VALUES (%s, %s), (%s, %s), (%s, %s);",
["1", "3", "2", "5", "-1", "7"],
),
),
(
[0, 2],
["col1", "col3"],
(
"INSERT INTO test_table (col1, col3) VALUES (%s, %s), (%s, %s), (%s, %s);",
["1", "foo", "2", "bar", "-1", "baz"],
),
),
(
[1, 2],
["col2", "col3"],
(
"INSERT INTO test_table (col2, col3) VALUES (%s, %s), (%s, %s), (%s, %s);",
["3", "foo", "5", "bar", "7", "baz"],
),
),
(
[0, 1, 2],
["col1", "col2", "col3"],
(
"INSERT INTO test_table (col1, col2, col3) VALUES (%s, %s, %s), (%s, %s, %s), (%s, %s, %s);",
["1", "3", "foo", "2", "5", "bar", "-1", "7", "baz"],
),
),
]
@patch("builtins.open", new_callable=mock_open)
@pytest.mark.parametrize("indexes,names,exp_execute_args", insert_bulk_data)
def test_insert_data_column_stmt(mocked_csv, indexes, names, exp_execute_args, mocker) -> None:
# mock fetchone to return "True" to ensure the table_name and column_name
# validation steps pass
mocker.patch("redshift_connector.Cursor.fetchone", return_value=[1])
mock_cursor: Cursor = Cursor.__new__(Cursor)
# spy on the execute method, so we can check value of sql_query
spy = mocker.spy(mock_cursor, "execute")
# mock out the connection
mock_cursor._c = Mock()
mock_cursor.paramstyle = "qmark"
mocked_csv.side_effect = [StringIO("""\col1,col2,col3\n1,3,foo\n2,5,bar\n-1,7,baz""")]
mock_cursor.insert_data_bulk(
filename="mocked_csv",
table_name="test_table",
parameter_indices=indexes,
column_names=names,
delimiter=",",
batch_size=3,
)
assert spy.called is True
assert spy.call_args[0][0] == exp_execute_args[0]
assert spy.call_args[0][1] == exp_execute_args[1]
@pytest.mark.parametrize("batch_size", [1, 2, 3, 4])
@patch("builtins.open", new_callable=mock_open)
def test_insert_data_uses_batch_size(mocked_csv, batch_size, mocker) -> None:
# mock fetchone to return "True" to ensure the table_name and column_name
# validation steps pass
mocker.patch("redshift_connector.Cursor.fetchone", return_value=[1])
mock_cursor: Cursor = Cursor.__new__(Cursor)
# spy on the execute method, so we can check value of sql_query
spy = mocker.spy(mock_cursor, "execute")
# mock out the connection
mock_cursor._c = Mock()
mock_cursor.paramstyle = "qmark"
mocked_csv.side_effect = [StringIO("""\col1,col2,col3\n1,3,foo\n2,5,bar\n-1,7,baz""")]
mock_cursor.insert_data_bulk(
filename="mocked_csv",
table_name="test_table",
parameter_indices=[0, 1, 2],
column_names=["col1", "col2", "col3"],
delimiter=",",
batch_size=batch_size,
)
assert spy.called is True
actual_insert_stmts_executed = 0
for call in spy.mock_calls:
if len(call[1]) == 2 and "INSERT INTO" in call[1][0]:
actual_insert_stmts_executed += 1
assert actual_insert_stmts_executed == ceil(3 / batch_size)
max_params = 32767
@patch("builtins.open", new_callable=mock_open)
def test_insert_data_bulk_raises_too_many_parameters(mocked_csv, mocker) -> None:
# mock fetchone to return "True" to ensure the table_name and column_name
# validation steps pass
mocker.patch("redshift_connector.Cursor.fetchone", return_value=[1])
mock_cursor: Cursor = Cursor.__new__(Cursor)
# mock out the connection to raise DataError.
mock_cursor._c = Mock()
mocker.patch.object(
mock_cursor._c, "execute", side_effect=DataError("Prepared statement exceeds bind parameter " "limit 32767.")
)
mock_cursor.paramstyle = "mocked"
indexes, names = (
[0],
["col1"],
)
csv_str = "\col1\n" + "1\n" * max_params + "1" # 32768 rows
mocked_csv.side_effect = [StringIO(csv_str)]
with pytest.raises(DataError, match="Prepared statement exceeds bind parameter limit 32767."):
mock_cursor.insert_data_bulk(
filename="mocked_csv",
table_name="githubissue165",
parameter_indices=indexes,
column_names=["col1"],
delimiter=",",
batch_size=max_params + 1,
)
@patch("builtins.open", new_callable=mock_open)
def test_insert_data_raises_too_many_parameters(mocker) -> None:
mock_cursor: Cursor = Cursor.__new__(Cursor)
# mock out the connection to raise DataError.
mock_cursor._c = Mock()
mock_cursor._c.execute.side_effect = DataError("Prepared statement exceeds bind " "parameter limit 32767.")
mock_cursor.paramstyle = "mocked"
prepared_stmt = "INSERT INTO githubissue165 (col1) VALUES " + "(%s), " * max_params + "(%s);"
params = [1 for _ in range(max_params + 1)]
with pytest.raises(DataError, match="Prepared statement exceeds bind parameter limit 32767."):
mock_cursor.execute(prepared_stmt, params)
@pandas_only
def test_write_dataframe_handles_npdtyes(mocker):
import numpy as np
import pandas as pd
mocker.patch("redshift_connector.Cursor.execute", return_value=None)
mocker.patch("redshift_connector.Cursor.fetchone", return_value=[1])
mock_cursor: Cursor = Cursor.__new__(Cursor)
mock_connection: Connection = Connection.__new__(Connection)
mock_cursor._c = mock_connection
mock_cursor.paramstyle = "mocked_val"
for datatype, data in (
("int8_col", np.array([1], dtype=np.int8)),
("int16_col", np.array([1], dtype=np.int16)),
("int32_col", np.array([1], dtype=np.int32)),
("int64_col", np.array([1], dtype=np.int64)),
("uint8_col", np.array([1], dtype=np.uint8)),
("uint16_col", np.array([1], dtype=np.uint16)),
("uint32_col", np.array([1], dtype=np.uint32)),
("uint64_col", np.array([1], dtype=np.uint64)),
("float16_col", np.array([1.0], dtype=np.float16)),
("float32_col", np.array([1.0], dtype=np.float32)),
("float64_col", np.array([1.0], dtype=np.float64)),
("complex64_col", np.array([1 + 1j], dtype=np.complex64)),
("complex128_col", np.array([1 + 1j], dtype=np.complex128)),
("bool_col", np.array([True], dtype=np.bool_)),
("string_col", np.array(["hello"], dtype="U")),
("object_col", np.array([{"key", "value"}], dtype=object)),
):
spy = mocker.spy(mock_cursor, "execute")
dataframe = pd.DataFrame(data)
mock_cursor.write_dataframe(df=dataframe, table=datatype)
assert spy.called
assert spy.call_count == 2 # once for __is_valid_table, once for write_dataframe
assert not isinstance(spy.mock_calls[1].args[1], np.ndarray)
assert isinstance(spy.mock_calls[1].args[1], list)
assert len(spy.mock_calls[1].args[1]) == 1
# bind parameter list should not contain numpy objects
assert not isinstance(spy.mock_calls[1].args[1][0], np.generic)
@pandas_only
def test_write_dataframe_handles_pandas_types(mocker):
import pandas as pd
mocker.patch("redshift_connector.Cursor.execute", return_value=None)
mocker.patch("redshift_connector.Cursor.fetchone", return_value=[1])
mock_cursor: Cursor = Cursor.__new__(Cursor)
mock_connection: Connection = Connection.__new__(Connection)
mock_cursor._c = mock_connection
mock_cursor.paramstyle = "mocked_val"
for datatype, data, _type in (
("int64", pd.Series([42]), int),
("float64", pd.Series([3.14]), float),
("object", pd.Series(["Hello, Pandas!"]), str),
("bool", pd.Series([True]), bool),
("datetime64", pd.Series([pd.Timestamp("2022-01-01")]), int),
("timedelta64", pd.Series([pd.Timedelta(days=5)]), int),
):
spy = mocker.spy(mock_cursor, "execute")
dataframe = pd.DataFrame(data)
mock_cursor.write_dataframe(df=dataframe, table=datatype)
assert spy.called
assert spy.call_count == 2 # once for __is_valid_table, once for write_dataframe
assert not isinstance(spy.mock_calls[1].args[1], pd.core.base.PandasObject)
assert isinstance(spy.mock_calls[1].args[1], list)
assert len(spy.mock_calls[1].args[1]) == 1
# bind parameter list should not contain numpy objects
assert isinstance(spy.mock_calls[1].args[1][0], _type)
@pandas_only
@pytest.mark.parametrize(
"datatype,data,_type",
(
("int", 42, int),
("float", 3.14, float),
("str", "H", str),
("bool", True, bool),
("list", [1, 2, 3], list),
("tuple", (4, 5, 6), tuple),
("set", {1, 2, 3}, set),
("datetime", datetime.datetime.now(datetime.timezone.utc), datetime.datetime),
),
)
def test_write_dataframe_handles_python_types(mocker, datatype, data, _type):
import datetime
import pandas as pd
mocker.patch("redshift_connector.Cursor.execute", return_value=None)
mocker.patch("redshift_connector.Cursor.fetchone", return_value=[1])
mock_cursor: Cursor = Cursor.__new__(Cursor)
mock_connection: Connection = Connection.__new__(Connection)
mock_cursor._c = mock_connection
mock_cursor.paramstyle = "mocked_val"
spy = mocker.spy(mock_cursor, "execute")
dataframe = pd.DataFrame({col: [data] * 1 for col in (datatype,)})
mock_cursor.write_dataframe(df=dataframe, table=datatype)
assert spy.called
assert spy.call_count == 2 # once for __is_valid_table, once for write_dataframe
assert not isinstance(spy.mock_calls[1].args[1], pd.core.base.PandasObject)
assert isinstance(spy.mock_calls[1].args[1], list)
assert len(spy.mock_calls[1].args[1]) == 1
assert isinstance((spy.mock_calls[1].args[1][0]), _type)